Molecular Mechanism of ATP Hydrolysis in an ABC Transporter
Prieß, M., Göddeke, H., Groenhof, G., & Schäfer, L. V. (2018). Molecular Mechanism of ATP Hydrolysis in an ABC Transporter. ACS Central Science, 4(10), 1334-1343. https://doi.org/10.1021/acscentsci.8b00369
Julkaistu sarjassa
ACS Central SciencePäivämäärä
2018Tekijänoikeudet
© 2018 American Chemical Society
Hydrolysis of nucleoside triphosphate (NTP) plays a key role for the function of many biomolecular systems. However, the chemistry of the catalytic reaction in terms of an atomic-level understanding of the structural, dynamic, and free energy changes associated with it often remains unknown. Here, we report the molecular mechanism of adenosine triphosphate (ATP) hydrolysis in the ATP-binding cassette (ABC) transporter BtuCD-F. Free energy profiles obtained from hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations show that the hydrolysis reaction proceeds in a stepwise manner. First, nucleophilic attack of an activated lytic water molecule at the ATP γ-phosphate yields ADP + HPO42- as intermediate product. A conserved glutamate that is located very close to the γ-phosphate transiently accepts a proton and thus acts as catalytic base. In the second step, the proton is transferred back from the catalytic base to the γ-phosphate, yielding ADP + H2PO4-. These two chemical reaction steps are followed by rearrangements of the hydrogen bond network and the coordination of the Mg2+ ion. The rate constant estimated from the computed free energy barriers is in very good agreement with experiments. The overall free energy change of the reaction is close to zero, suggesting that phosphate bond cleavage itself does not provide a power stroke for conformational changes. Instead, ATP binding is essential for tight dimerization of the nucleotide-binding domains and the transition of the transmembrane domains from inward- to outward-facing, whereas ATP hydrolysis resets the conformational cycle. The mechanism is likely relevant for all ABC transporters and might have implications also for other NTPases, as many residues involved in nucleotide binding and hydrolysis are strictly conserved. © 2018 American Chemical Society.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
2374-7943Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28655610
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Muut, SALisätietoja rahoituksesta
This work was funded by the Deutsche Forschungsgemeinschaft (DFG) through an Emmy Noether grant to L.V.S. (SCHA 1574/3-1) and Cluster of Excellence RESOLV (EXC 1069). G.G. acknowledges the Academy of Finland for support (Grant 304455).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues
Jagadabhi, Padma Shanthi (University of Jyväskylä, 2011) -
Selective hemicellulose hydrolysis of Scots pine sawdust
Rusanen, Annu; Lappalainen, Katja; Kärkkäinen, Johanna; Tuuttila, Tero; Mikola, Marja; Lassi, Ulla (Springer, 2019)The depletion of fossil resources is driving forward the search for new and alternative renewable feedstocks in the production of renewable chemicals, which could replace the petroleum-based ones. One such feedstock is ... -
Dissolution and hydrolysis of fibre sludge using hydroxyalkylimidazolium hydrogensulphate ionic liquids
Dong, Yue; Holm, Jana; Kärkkäinen, Johanna; Nowicki, Janusz; Lassi, Ulla (Pergamon, 2014)The dissolution and hydrolysis of wet fibre sludge in ionic liquids (ILs) with different reaction conditions are performed in this study. Novel types of hydroxyalkylimidazolium hydrogensulphate ILs, [glymim]HSO4, [hemim]HSO4 ... -
Activated carbon from hydrolysis lignin : Effect of activation method on carbon properties
Bergna, Davide; Varila, Toni; Romar, Henrik; Lassi, Ulla (Elsevier BV, 2022)This study presents the effects of different activation methods to produce activated carbon from the hydrolysis lignin. Pretreatment of the feedstock with common mineral acids (HCL, HNO3, and H3PO4), different steam rates ... -
Assembly of Spinach Chloroplast ATP Synthase Rotor Ring Protein-Lipid Complex
Novitskaia, Olga; Buslaev, Pavel; Gushchin, Ivan (Frontiers Media, 2019)Rotor ATPases are large multisubunit membrane protein complexes found in all kingdoms of life. The membrane parts of these ATPases include a ring-like assembly, so-called c-ring, consisting of several subunits c, plugged ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.