Show simple item record

dc.contributor.authorZhou-Kangas, Yue
dc.date.accessioned2018-09-28T12:23:42Z
dc.date.available2018-09-28T12:23:42Z
dc.date.issued2018
dc.identifier.isbn978-951-39-7549-4fi
dc.identifier.isbn978-951-39-7549-4
dc.identifier.otheroai:jykdok.linneanet.fi:1895269
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/59712
dc.description.abstractPractical optimization problems usually have multiple objectives, and they also involve uncertainty from different sources. Various robustness concepts have been proposed to handle multiple objectives and the involved uncertainty simultaneously. However, the practical applicability of the proposed concepts in decision making has not been widely studied in the literature. Developing solution methods to support a decision maker to find a most preferred robust solution is an even more rarely studied topic. Thus, we focus on two goals in this thesis including 1) analyzing the practical applicability of different robustness concepts in decision making and 2) developing interactive methods for supporting decision makers to find most preferred robust solutions under different types of uncertainty. We first consider decision uncertainty (i.e., the optimized solutions cannot be guaranteed with exact implementations). We propose a robustness measure to quantify the effects of uncertainty in the objective function values of solutions. We incorporate the robustness measure to an interactive method, where the solutions are presented to the decision maker with enhanced visualization. We then consider parameter uncertainty (i.e., the parameters in the objective functions involve uncertainty). We first utilize the concept of set-based minmax robustness and develop a two-stage interactive method to support the decision maker to find a most preferred set-based minmax robust Pareto optimal solution. Since set-based minmax robust Pareto optimal solutions are difficult to compute, we propose an evolutionary multiobjective optimization method to approximate a set of them. We then analyze different robustness concepts and verify that lightly robust Pareto optimal solutions are good trade-offs between robustness and objective function values. For supporting a decision maker to find a most preferred lightly robust Pareto optimal solution, we propose an interactive method. The results of this thesis extend the applicability of robustness concepts in decision making to practical problems. In addition, the proposed methods bring decision support in multiobjective robust optimization into practice.fi
dc.format.extent1 verkkoaineisto (77 sivua, 55 sivua useina numerointijaksoina, 44 numeroimatonta sivua) : kuvitettu
dc.language.isoeng
dc.publisherJyväskylän yliopisto
dc.relation.ispartofseriesJYU dissertations
dc.relation.haspart<b>Artikkeli I:</b> Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2019). Solving multiobjective optimization problems with decision uncertainty : an interactive approach. <i>Journal of Business Economics, 89 (1), 25-51.</i> <a href="http://dx.doi.org/10.1007/s11573-018-0900-1"target="_blank"> DOI: 10.1007/s11573-018-0900-1</a>
dc.relation.haspart<b>Artikkeli II:</b> Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2018). Interactive Multiobjective Robust Optimization with NIMBUS. In <i>M. Baum, G. Brenner, J. Grabowski, T. Hanschke, S. Hartmann, & A. Schöbel (Eds.), Simulation Science : First International Workshop, SimScience 2017, Göttingen, Germany, April 27–28, 2017, Revised Selected Papers (pp. 60-76). Cham: Springer.</i> <a href="http://dx.doi.org/10.1007/978-3-319-96271-9_4"target="_blank"> DOI: 10.1007/978-3-319-96271-9_4</a>
dc.relation.haspart<b>Artikkeli III:</b> Zhou-Kangas, Y., & Miettinen, K. (2018). A Simple Indicator Based Evolutionary Algorithm for Set-Based Minmax Robustness. In <i>A. Auger, C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, & D. Whitley (Eds.), Parallel Problem Solving from Nature - PPSN XV : 15th International Conference, Coimbra, Portugal, September 8–12, 2018, Proceedings, Part 1 (pp. 287-297). Cham: Springer.</i> <a href="http://dx.doi.org/10.1007/978-3-319-99253-2_23"target="_blank"> DOI: 10.1007/978-3-319-99253-2_23</a>
dc.relation.haspart<b>Artikkeli IV:</b> Yue Zhou-Kangas and Anita Schöbel. The Price of Multiobjective Robustness: Analyzing Solution Sets to Uncertain Multiobjective Optimization Problems. <i>Submitted manuscript</i>
dc.relation.haspart<b>Artikkeli V:</b> Zhou-Kangas, Y., & Miettinen, K. (2019). Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality. <i>OR Spektrum, 41 (2), 391-413.</i> <a href="http://dx.doi.org/10.1007/s00291-018-0540-4"target="_blank"> DOI: 10.1007/s00291-018-0540-4</a>
dc.subject.otherrobustness
dc.subject.othermultiobjective optimization
dc.subject.otheruncertainty
dc.subject.otherinteractive methods
dc.subject.otherdecision-making
dc.titleInteractive methods for multiobjective robust optimization
dc.identifier.urnURN:ISBN:978-951-39-7549-4
dc.contributor.yliopistoJyväskylän yliopiston informaatioteknologian tiedekuntafi
dc.contributor.oppiaineTietotekniikkafi
dc.relation.issn2489-9003
dc.relation.numberinseries16
dc.rights.accesslevelopenAccessfi
dc.subject.ysooptimointi
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopareto-tehokkuus
dc.subject.ysoepävarmuus
dc.subject.ysopäätöksentukijärjestelmät


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record