The Impact of Regularization on Convolutional Neural Networks
Authors
Date
2018Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien luokitteluun, tunnistukseen ja havaitsemiseen. Syvän oppimisen menetelmien toimivuutta haittaa kuitenkin ylisovittumisongelma. Koska konvoluutioverkot ovat konenäössä tehokkaita, täytyy niiden ylisovittumisen välttämiseksi kehittää uusia menetelmiä. Tämä tutkielma tarjoaa katsauksen lähiaikoina kehitettyihin regularisointimenetelmiin konvoluutioverkkojen ja muiden syvän oppimisen menetelmien tarpeisiin. Tutkielmassa verrataan yleisimmin käytettyjä regularisointimenetelmiä (dropout, batch normalization sekä kernel -regularisointi) kouluttamalla konvoluutioverkko kuvien luokitteluun kahdelle aineistolle (CIFAR-10 ja Kagglen kissa/koira -aineisto). Mallit validoidaan 10-ositetulla ristiinvalidoinnilla. Empiiriset tulokset varmistavat, että dropout-menettely on muihin kokeiltuihin verrattuna vahva tekniikka
molempien aineistojen kohdalla
...
Deep learning has become the most popular class of machine learning family in
recent times. Convolutional neural networks is one of the most popular deep learning architecture for solving many complicated and sophisticated problems like image classification,
image recognition, and image detection. However, deep learning techniques faces overfitting
problems, which is a hindrance to the model performance. Since convolutional neural networks are outperforming in the field of computer vision, so the need for new regularization
techniques to reduce overfitting issues in convolutional neural networks is inevitable. This
thesis work provides a peek into the recently developed regularization methods particularly
for convolutional neural networks and generally for other deep learning techniques. This thesis also showcases the comparison of most commonly used regularization methods (dropout,
batch normalization, kernel regularization) by training convolutional neural networks for image classification on two image datasets (CIFAR-10 and Kaggle‘s Cat vs Dog). Each model
is cross validated by 10- fold cross validation. Empirical results confirms that dropout is a
strong regularization technique as compared to the other two methods( batch normalization
and L1 and L2 regularization) on both datasets.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29561]
Related items
Showing items with similar title or keywords.
-
Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model
Saarela, Mirka; Geogieva, Lilia (MDPI AG, 2022)Skin cancer is one of the most prevalent of all cancers. Because of its being widespread and externally observable, there is a potential that machine learning models integrated into artificial intelligence systems will ... -
Using deep neural networks for kinematic analysis : challenges and opportunities
Cronin, Neil J. (Elsevier BV, 2021)Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ... -
Recent Applications of Explainable AI (XAI) : A Systematic Literature Review
Saarela, Mirka; Podgorelec, Vili (MDPI, 2024)This systematic literature review employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to investigate recent applications of explainable AI (XAI) over the past three years. ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ...