Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution
Zhou, Q., Kaappa, S., Malola, S., Lu, H., Guan, D., Li, Y., Wang, H., Xie, Z., Ma, Z., Häkkinen, H., Zheng, N., Yang, X., & Zheng, L. (2018). Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution. Nature Communications, 9, Article 2948. https://doi.org/10.1038/s41467-018-05372-5
Published in
Nature CommunicationsAuthors
Lu, Hui |
Date
2018Copyright
© the Authors, 2018.
High-resolution real-space imaging of nanoparticle surfaces is desirable for better understanding of surface composition and morphology, molecular interactions at the surface, and nanoparticle chemical functionality in its environment. However, achieving molecular or sub-molecular resolution has proven to be very challenging, due to highly curved nanoparticle surfaces and often insufficient knowledge of the monolayer composition. Here, we demonstrate sub-molecular resolution in scanning tunneling microscopy imaging of thiol monolayer of a 5 nm nanoparticle Ag374 protected by tert-butyl benzene thiol. The experimental data is confirmed by comparisons through a pattern recognition algorithm to simulated topography images from density functional theory using the known total structure of the Ag374 nanocluster. Our work demonstrates a working methodology for investigations of structure and composition of organic monolayers on curved nanoparticle surfaces, which helps designing functionalities for nanoparticle-based applications.
...
Publisher
Nature Publishing GroupISSN Search the Publication Forum
2041-1723Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28198781
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Programme, AoF; Research costs of Academy Professor, AoFAdditional information about funding
The experimental work done in Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, was supported both by Xiamen University (The National Key R&D Program of China grant 2017YFA0207302, National Natural Science Foundation of China, grant 21731005, 21420102001 and 21721001 the National Key R&D Program of China grant 2017YFA0207302) and DICP (National Natural Science Foundation of China grant 21688102, the Strategic Priority Research Program of Chinese Academy of Science, grant XDB17000000, the National Key Research and Development Program of the MOST of China, grant 2016YFA0200603 and the open fund of the state key laboratory of molecular reaction dynamics in DICP, CAS, grant SKLMRD-K201707). Q.Z. thanks Dr. Huayan Yang for providing the samples for STM imaging. S.M. and H.H. thank T. Kärkkäinen and P. Nieminen for discussions on pattern recognition algorithms. The theoretical and computational work in the University of Jyväskylä was funded by the Academy of Finland (grants 294217, 315549, AIPSE program, and H.H.’s Academy Professorship). H.H. acknowledges the support from China’s National Innovation and Intelligence Introduction Base visitor program. S.K. thanks the Vilho, Yrjö, and Kalle Väisälä Foundation for the grant for doctoral studies. The DFT simulations were done at the Finnish national supercomputing center CSC and at the Barcelona Supercomputing Center (PRACE project “NANOMETALS”). ...License
Related items
Showing items with similar title or keywords.
-
Photodynamics studies of ligand-protected gold nanoclusters by using ultrafast transient infrared spectroscopy
Mustalahti, Satu (University of Jyväskylä, 2015)Highly monodisperse samples of three ligand-protected gold nanoclusters Au102(pMBA)44, Au144(SC2H4Ph)60, and a cluster tentatively identified as Au130(pMBA)50, were characterized by UV/vis and infrared spectroscopy, ... -
Elucidating the ligand shell structure and dynamics of Au683MBA32 gold nanocluster using molecular dynamics simulations
Lautala, Saara (2017)Synthesising novel gold nanoparticles and -clusters can be often easier than characterising them, and after experimental analysis many options for the possible molecular formula of the cluster may remain as equally valid ... -
Computational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters
López-Estrada, Omar; Mammen, Nisha; Laverdure, Laura; Melander, Marko M.; Häkkinen, Hannu; Honkala, Karoliina (American Chemical Society (ACS), 2023)The hydrogen evolution reaction (HER) is a critical reaction in addressing climate change; however, it requires catalysts to be generated on an industrial scale. Nanomaterials offer several advantages over conventional HER ... -
Analysis of the Electronic Structure of Non-Spherical Ligand-Protected Metal Nanoclusters : The Case of a Box-Like Ag67
Juarez Mosqueda, Rosalba; Kaappa, Sami; Malola, Sami; Häkkinen, Hannu (American Chemical Society, 2017)In this work we introduce a new strategy to investigate the electronic shell structure of ligand-protected metal nanoclusters of polyhedral core shape. The central idea is to identify the symmetry of the Kohn–Sham molecular ... -
Selective Acrolein Hydrogenation over Ligand-Protected Gold Clusters : A Venus Flytrap Mechanism
Mammen, Nisha; Malola, Sami; Honkala, Karoliina; Häkkinen, Hannu (American Chemical Society (ACS), 2022)The catalytic partial hydrogenation of α,β-unsaturated aldehydes is an ideal reaction to understand the selectivity between two different functional groups Here the two functional groups are C═C and C═O, and the hydrogenation ...