Show simple item record

dc.contributor.authorHenze, Miriam J.
dc.contributor.authorLind, Olle
dc.contributor.authorMappes, Johanna
dc.contributor.authorRojas Zuluaga, Bibiana
dc.contributor.authorKelber, Almut
dc.date.accessioned2018-07-09T11:40:20Z
dc.date.available2019-04-16T21:35:22Z
dc.date.issued2018
dc.identifier.citationHenze, M. J., Lind, O., Mappes, J., Rojas Zuluaga, B., & Kelber, A. (2018). An aposematic colour-polymorphic moth seen through the eyes of conspecifics and predators : sensitivity and colour discrimination in a tiger moth. <i>Functional Ecology</i>, <i>32</i>(7), 1797-1809. <a href="https://doi.org/10.1111/1365-2435.13100" target="_blank">https://doi.org/10.1111/1365-2435.13100</a>
dc.identifier.otherCONVID_27951549
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58877
dc.description.abstractAlthough predation is commonly thought to exert the strongest selective pressure on coloration in aposematic species, sexual selection may also influence coloration. Specifically, polymorphism in aposematic species cannot be explained by natural selection alone. Males of the aposematic wood tiger moth (Arctia plantaginis) are polymorphic for hindwing coloration throughout most of their range. In Scandinavia, they display either white or yellow hindwings. Female hindwing coloration varies continuously from bright orange to red. Redder females and yellow males suffer least from bird predation. White males often have higher mating success than yellow males. Therefore, we ask whether females can discriminate the two male morphs by colour. Males approach females by following pheromone plumes from a distance, but search visually at short range. This raises the questions whether males discriminate female coloration and, in turn, whether female coloration is also sexually selected. Using electroretinograms, we found significantly larger retinal responses in male than female A. plantaginis, but similar spectral sensitivities in both sexes, with peaks in the UV (349 nm), blue (457 nm) and green (521 nm) wavelength range. According to colour vision models, conspecifics can discriminate white and yellow males as separate morphs, but not orange and red females. For moths and birds (Cyanistes caeruleus), white males are more conspicuous against green and brown backgrounds, mostly due to UV reflectivity, and red females are slightly more conspicuous than orange females. The costly red coloration among females is likely selected by predator pressure, not by conspecifics, whereas male colour polymorphism is probably maintained, at least partly, by the opposing forces of predation pressure favouring yellow males, and female preference for white males. Whether or not the preference for white males is based on visual cues requires further testing. The evolution of polymorphic aposematic animals can be better understood when the visual system of the species and their predators is taken into consideration.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-Blackwell Publishing Ltd.
dc.relation.ispartofseriesFunctional Ecology
dc.rightsIn Copyright
dc.subject.otherarctiid moths
dc.subject.othercolour polymorphism
dc.subject.othercolour vision
dc.subject.otherpredator pressure
dc.subject.otherspectral sensitivity
dc.titleAn aposematic colour-polymorphic moth seen through the eyes of conspecifics and predators : sensitivity and colour discrimination in a tiger moth
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201807053478
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineBiologisten vuorovaikutusten huippututkimusyksikköfi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.contributor.oppiaineCentre of Excellence in Biological Interactions Researchen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-07-05T09:15:06Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1797-1809
dc.relation.issn0269-8463
dc.relation.numberinseries7
dc.relation.volume32
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 The Authors. Functional Ecology © 2018 British Ecological Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoluonnonvalinta
dc.subject.ysosaalistus
dc.subject.ysoseksuaalivalinta
dc.subject.ysovaroitusväri
dc.subject.ysosiilikkäät
dc.subject.ysotäpläsiilikäs
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4473
jyx.subject.urihttp://www.yso.fi/onto/yso/p946
jyx.subject.urihttp://www.yso.fi/onto/yso/p14268
jyx.subject.urihttp://www.yso.fi/onto/yso/p27907
jyx.subject.urihttp://www.yso.fi/onto/yso/p27532
jyx.subject.urihttp://www.yso.fi/onto/yso/p27473
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.datasethttps://doi.org/10.5061/dryad.s46t627
dc.relation.doi10.1111/1365-2435.13100
jyx.fundinginformationFinnish Centre of Excellence in Biological Interactions. Grant Number: 2100000256. The Swedish Research Council. Grant Numbers: 2012‐02212, 637‐2013‐388.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright