Safety in Numbers : How Color Morph Frequency Affects Predation Risk in an Aposematic Moth
Gordon, S. P., Burdfield-Steel, E., Kirvesoja, J., & Mappes, J. (2021). Safety in Numbers : How Color Morph Frequency Affects Predation Risk in an Aposematic Moth. American Naturalist, 198(1), 128-141. https://doi.org/10.1086/714528
Julkaistu sarjassa
American NaturalistPäivämäärä
2021Oppiaine
Evoluutiotutkimus (huippuyksikkö)Ekologia ja evoluutiobiologiaCentre of Excellence in Evolutionary ResearchEcology and Evolutionary BiologyTekijänoikeudet
© 2021 by The University of Chicago.
Polymorphic warning signals in aposematic systems are enigmatic because predator learning should favor the most common form, creating positive frequency-dependent survival. However, many populations exhibit variation in warning signals. There are various selective mechanisms that can counter positive frequency-dependent selection and lead to temporal or spatial warning signal diversification. Examining these mechanisms and their effects requires first confirming whether the most common morphs are favored at both local and regional scales. Empirical examples of this are uncommon and often include potentially confounding factors, such as a lack of knowledge of predator identity and behavior. We tested how bird behavior influences the survival of three coexisting morphs of the aposematic wood tiger moth Arctia plantaginis offered to a sympatric predator (great tit Parus major) at different frequencies. We found that although positive frequency-dependent selection is present, its strength is affected by predator characteristics and varying prey profitability. These results highlight the need to understand predator foraging in natural communities with variable prey defenses in order to better examine how behavioral interactions shape evolutionary outcomes.
...
Julkaisija
University of Chicago PressISSN Hae Julkaisufoorumista
0003-0147Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/98895193
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Tutkijatohtori, SALisätietoja rahoituksesta
This study was funded by the Center of Excellence in Biological Interactions (Academy of Finland; project 2100000256 to J.M. and postdoctoral project 2100002744 fellowship to S.P.G.).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth
Rönkä, Katja; Valkonen, Janne K.; Nokelainen, Ossi; Rojas, Bibiana; Gordon, Swanne; Burdfield‐Steel, Emily; Mappes, Johanna (Wiley-Blackwell, 2020)Warning signals are predicted to develop signal monomorphism via positive frequency‐dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large‐scale ... -
Weak warning signals can persist in the absence of gene flow
Lawrence, J. P.; Rojas, Bibiana; Fouquet, Antoine; Mappes, Johanna; Blanchette, Annelise; Saporito, Ralph A.; Bosque, Renan Janke; Courtois, Elodie A.; Noonan, Brice P. (National Academy of Sciences, 2019)Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent ... -
Evolution of signal diversity : predator-prey interactions and the maintenance of warning colour polymorphism in the wood tiger moth Arctia plantaginis
Rönkä, Katja (University of Jyväskylä, 2017)Aposematic organisms avoid predation by advertising defences with warning signals. The theory of aposematism predicts warning signal uniformity, yet variation in warning coloration is widespread. The chemically defended ... -
Genetic colour variation visible for predators and conspecifics is concealed from humans in a polymorphic moth
Nokelainen, Ossi; Galarza, Juan A.; Kirvesoja, Jimi; Suisto, Kaisa; Mappes, Johanna (Wiley-Blackwell, 2022)The definition of colour polymorphism is intuitive: genetic variants express discretely coloured phenotypes. This classification is, however, elusive as humans form subjective categories or ignore differences that cannot ... -
Context-dependent coloration of prey and predator decision making in contrasting light environments
Nokelainen, Ossi; de Moraes Rezende, Francisko; Valkonen, Janne K.; Mappes, Johanna (Oxford University Press (OUP), 2022)A big question in behavioral ecology is what drives diversity of color signals. One possible explanation is that environmental conditions, such as light environment, may alter visual signaling of prey, which could affect ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.