Tensor tomography in periodic slabs
Ilmavirta, J., & Uhlmann, G. (2018). Tensor tomography in periodic slabs. Journal of Functional Analysis, 275(2), 288-299. https://doi.org/10.1016/j.jfa.2018.04.004
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2018Tekijänoikeudet
© 2018 Elsevier Inc.
The X-ray transform on the periodic slab [0, 1]×Tn, n ≥ 0, has a non-trivial kernel due to the symmetry of the manifold and presence of trapped geodesics. For tensor fields gauge freedom increases the kernel further, and the X-ray transform is not solenoidally injective unless n =0.We characterize the kernel of the geodesic X-ray transform for L2-regular m-tensors for any m ≥ 0. The characterization extends to more general manifolds, twisted slabs, including the Möbius strip as the simplest example.
Julkaisija
Academic PressISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28024362
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
J.I. was supported by the Academy of Finland (decision 295853), and he is grateful for hospitality and support offered by the University of Washington during visits. G.U. was partly supported by NSF grant DMS-1265958, a Si-Yuan Professorship at IAS, HKUST, and a FiDiPro at University of Helsinki.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Tensor Tomography on Negatively Curved Manifolds of Low Regularity
Ilmavirta, Joonas; Kykkänen, Antti (Springer, 2024)We prove solenoidal injectivity for the geodesic X-ray transform of tensor fields on simple Riemannian manifolds with C1,1 metrics and non-positive sectional curvature. The proof of the result rests on Pestov energy estimates ... -
X-ray Tomography of One-forms with Partial Data
Ilmavirta, Joonas; Mönkkönen, Keijo (Society for Industrial & Applied Mathematics (SIAM), 2021)If the integrals of a one-form over all lines meeting a small open set vanish and the form is closed in this set, then the one-form is exact in the whole Euclidean space. We obtain a unique continuation result for the ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Unique Continuation Results for Certain Generalized Ray Transforms of Symmetric Tensor Fields
Agrawal, Divyansh; Krishnan, Venkateswaran P.; Sahoo, Suman Kumar (Springer Science and Business Media LLC, 2022)Let Im denote the Euclidean ray transform acting on compactly supported symmetric m-tensor field distributions f, and I∗m be its formal L2 adjoint. We study a unique continuation result for the operator Nm=I∗mIm. More ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.