dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Gomes, Joao | |
dc.contributor.author | Mesquita, Diego | |
dc.contributor.author | Freire, Ananda | |
dc.contributor.author | Junior, Amauri Souza | |
dc.date.accessioned | 2018-05-21T10:04:42Z | |
dc.date.available | 2018-05-21T10:04:42Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Kärkkäinen, T., Gomes, J., Mesquita, D., Freire, A., & Junior, A. S. (2017). A Robust Minimal Learning Machine based on the M-Estimator. In <i>ESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 383-388). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf</a> | |
dc.identifier.other | CONVID_28052396 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/58047 | |
dc.description.abstract | In this paper we propose a robust Minimal Learning Machine
(R-RLM) for regression problems. The proposed method uses a robust
M-estimator to generate a linear mapping between input and output
distances matrices of MLM. The R-MLM was tested on one synthetic
and three real world datasets that were contaminated with an increasing
number of outliers. The method achieved a performance comparable to
the robust Extreme Learning Machine (R-RLM) and thus can be seen as
a valid alternative for regression tasks on datasets with outliers. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.uri | https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | learning methods | |
dc.title | A Robust Minimal Learning Machine based on the M-Estimator | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-201805162639 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2018-05-16T12:09:12Z | |
dc.relation.isbn | 978-2-87587-039-1 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 383-388 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2017. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.type.okm | A4 | |