Näytä suppeat kuvailutiedot

dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorGomes, Joao
dc.contributor.authorMesquita, Diego
dc.contributor.authorFreire, Ananda
dc.contributor.authorJunior, Amauri Souza
dc.date.accessioned2018-05-21T10:04:42Z
dc.date.available2018-05-21T10:04:42Z
dc.date.issued2017
dc.identifier.citationKärkkäinen, T., Gomes, J., Mesquita, D., Freire, A., & Junior, A. S. (2017). A Robust Minimal Learning Machine based on the M-Estimator. In <i>ESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 383-388). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf</a>
dc.identifier.otherCONVID_28052396
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58047
dc.description.abstractIn this paper we propose a robust Minimal Learning Machine (R-RLM) for regression problems. The proposed method uses a robust M-estimator to generate a linear mapping between input and output distances matrices of MLM. The R-MLM was tested on one synthetic and three real world datasets that were contaminated with an increasing number of outliers. The method achieved a performance comparable to the robust Extreme Learning Machine (R-RLM) and thus can be seen as a valid alternative for regression tasks on datasets with outliers.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherESANN
dc.relation.ispartofESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.urihttps://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-44.pdf
dc.rightsCC BY-NC 4.0
dc.subject.otherlearning methods
dc.titleA Robust Minimal Learning Machine based on the M-Estimator
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201805162639
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2018-05-16T12:09:12Z
dc.relation.isbn978-2-87587-039-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange383-388
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2017.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC 4.0