dc.contributor.author | Kumar, Sanjay | |
dc.contributor.author | Viinikainen, Ari | |
dc.contributor.author | Hämäläinen, Timo | |
dc.date.accessioned | 2018-05-21T09:31:12Z | |
dc.date.available | 2018-05-21T09:31:12Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Kumar, S., Viinikainen, A., & Hämäläinen, T. (2017). Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection. In <i>ICITST 2017 : The 12th International Conference for Internet Technology and Secured Transactions</i> (pp. 261-268). Infonomics Society. <a href="https://doi.org/10.23919/ICITST.2017.8356396" target="_blank">https://doi.org/10.23919/ICITST.2017.8356396</a> | |
dc.identifier.other | CONVID_27862488 | |
dc.identifier.other | TUTKAID_76600 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/58044 | |
dc.description.abstract | The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use tailored techniques to avoid detection by the traditional antivirus. The emerging need is to detect these threats by any flow-based network solution. Therefore, we propose and evaluate a network based model which uses ensemble Machine Learning (ML) methods in order to identify the mobile threats, by analyzing the network flows of the malware communication. The ensemble ML methods not only protect over-fitting of the model but also cope with the issues related to the changing behavior of the attackers. The focus of this study is on android based mobile malwares due to its popularity among users. We have used ensemble methods to combine output of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and Ridor. Based on the evaluation results, the proposed model was found efficient at detecting known and unknown threats with the accuracy of 98.2%. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Infonomics Society | |
dc.relation.ispartof | ICITST 2017 : The 12th International Conference for Internet Technology and Secured Transactions | |
dc.rights | In Copyright | |
dc.subject.other | intrusion detection | |
dc.subject.other | ensemble methods | |
dc.subject.other | supervised machine learning | |
dc.subject.other | mobile threats | |
dc.subject.other | anomaly detection | |
dc.title | Evaluation of Ensemble Machine Learning Methods in Mobile Threat Detection | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201805172654 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2018-05-17T09:15:12Z | |
dc.relation.isbn | 978-1-908320-93-3 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 261-268 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2017 IEEE. Personal use of this material is permitted. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | International Conference for Internet Technology and Secured Transactions | |
dc.subject.yso | tietoturva | |
dc.subject.yso | mobiililaitteet | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5479 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4834 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.23919/ICITST.2017.8356396 | |
dc.type.okm | A4 | |