Näytä suppeat kuvailutiedot

dc.contributor.authorAslam, Muhammad Waqar
dc.contributor.authorZhu, Zhechen
dc.contributor.authorNandi, Asoke
dc.date.accessioned2018-04-27T06:55:50Z
dc.date.available2018-04-27T06:55:50Z
dc.date.issued2018
dc.identifier.citationAslam, M. W., Zhu, Z., & Nandi, A. (2018). Diverse partner selection with brood recombination in genetic programming. <i>Applied Soft Computing</i>, <i>67</i>, 558-566. <a href="https://doi.org/10.1016/j.asoc.2018.03.035" target="_blank">https://doi.org/10.1016/j.asoc.2018.03.035</a>
dc.identifier.otherCONVID_27976319
dc.identifier.otherTUTKAID_77216
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57785
dc.description.abstractThe ultimate goal of learning algorithms is to find the best solution from a search space without testing each and every solution available in the search space. During the evolution process new solutions (children) are produced from existing solutions (parents), where new solutions are expected to be better than existing solutions. This paper presents a new parent selection method for the crossover operation in genetic programming. The idea is to promote crossover between two behaviourally (phenotype) diverse parents such that the probability of children being better than their parents increases. The relative phenotype strengths and weaknesses of pairs of parents are exploited to find out if their crossover is beneficial or not (diverse partner selection (DPS)). Based on the probable improvement in children compared to their parents, crossover is either allowed or disallowed. The parents qualifying for crossover through this process are expected to produce much better children and are allowed to produce more children than normal parents through brood recombination (BR). BR helps to explore the search space around diverse parents much more efficiently. Experimental results from different benchmarking problems demonstrate that the proposed method (DPS with BR) improves the performance of genetic programming significantly.
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesApplied Soft Computing
dc.subject.othergenetic programming
dc.subject.otherpartner selection
dc.subject.otherbrood recombination
dc.titleDiverse partner selection with brood recombination in genetic programming
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201804031883
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-04-03T06:15:04Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange558-566
dc.relation.issn1568-4946
dc.relation.numberinseries0
dc.relation.volume67
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
dc.rights.accesslevelopenAccessfi
dc.subject.ysokoneoppiminen
dc.subject.ysoevoluutiolaskenta
dc.subject.ysogeneettiset algoritmit
dc.subject.ysomonimuotoisuus
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
jyx.subject.urihttp://www.yso.fi/onto/yso/p7987
jyx.subject.urihttp://www.yso.fi/onto/yso/p14084
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.asoc.2018.03.035
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

© the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.
Ellei muuten mainita, aineiston lisenssi on © the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License.