Näytä suppeat kuvailutiedot

dc.contributor.authorTsatsishvili, Valeri
dc.contributor.authorBurunat, Iballa
dc.contributor.authorCong, Fengyu
dc.contributor.authorToiviainen, Petri
dc.contributor.authorAlluri, Vinoo
dc.contributor.authorRistaniemi, Tapani
dc.date.accessioned2018-04-10T08:42:41Z
dc.date.available2019-12-01T22:35:14Z
dc.date.issued2018
dc.identifier.citationTsatsishvili, V., Burunat, I., Cong, F., Toiviainen, P., Alluri, V., & Ristaniemi, T. (2018). On application of kernel PCA for generating stimulus features for fMRI during continuous music listening. <i>Journal of Neuroscience Methods</i>, <i>303</i>, 1-6. <a href="https://doi.org/10.1016/j.jneumeth.2018.03.014" target="_blank">https://doi.org/10.1016/j.jneumeth.2018.03.014</a>
dc.identifier.otherCONVID_27976498
dc.identifier.otherTUTKAID_77217
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57528
dc.description.abstractBackground There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. New method fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. Results The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Comparison with existing method Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Conclusions Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing.
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesJournal of Neuroscience Methods
dc.subject.otherfunctional magnetic resonance imaging (fMRI)
dc.subject.othernaturalistic fMRI
dc.subject.otherkernel PCA
dc.subject.othermusic stimulus
dc.subject.othermusical features
dc.subject.otherfeature generation
dc.titleOn application of kernel PCA for generating stimulus features for fMRI during continuous music listening
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201804051927
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosMusiikin, taiteen ja kulttuurin tutkimuksen laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Music, Art and Culture Studiesen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMusiikkitiedefi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineMusicologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-04-05T12:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-6
dc.relation.issn0165-0270
dc.relation.numberinseries0
dc.relation.volume303
dc.type.versionacceptedVersion
dc.rights.copyright© Elsevier Ltd, 2018. This is a final draft version of an article whose final and definitive form has been published by Elsevier Ltd. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber272250
dc.subject.ysomusiikki
dc.subject.ysotoiminnallinen magneettikuvaus
dc.subject.ysoärsykkeet
jyx.subject.urihttp://www.yso.fi/onto/yso/p1808
jyx.subject.urihttp://www.yso.fi/onto/yso/p24211
jyx.subject.urihttp://www.yso.fi/onto/yso/p2943
dc.relation.doi10.1016/j.jneumeth.2018.03.014
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundinginformationThe first author wishes to thank Fabian Prezja and Virpi-Liisa Kykyri for their support. Part of this work was financially supported by the Academy of Finland [project numbers 272250 and 274037]
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot