dc.contributor.author | Rüland, Angkana | |
dc.contributor.author | Salo, Mikko | |
dc.date.accessioned | 2018-02-23T12:29:23Z | |
dc.date.available | 2018-02-23T12:29:23Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Rüland, A., & Salo, M. (2018). Exponential instability in the fractional Calderón problem. <i>Inverse Problems</i>, <i>34</i>(4), Article 045003. <a href="https://doi.org/10.1088/1361-6420/aaac5a" target="_blank">https://doi.org/10.1088/1361-6420/aaac5a</a> | |
dc.identifier.other | CONVID_27888015 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/57168 | |
dc.description.abstract | In this paper we prove the exponential instability of the fractional Calderón problem and thus prove the optimality of the logarithmic stability estimate from Rüland and Salo (2017 arXiv:1708.06294). In order to infer this result, we follow the strategy introduced by Mandache in (2001 Inverse Problems 17 1435) for the standard Calderón problem. Here we exploit a close relation between the fractional Calderón problem and the classical Poisson operator. Moreover, using the construction of a suitable orthonormal basis, we also prove (almost) optimality of the Runge approximation result for the fractional Laplacian, which was derived in Rüland and Salo (2017 arXiv:1708.06294). Finally, in one dimension, we show a close relation between the fractional Calderón problem and the truncated Hilbert transform. | en |
dc.language.iso | eng | |
dc.publisher | Institute of Physics | |
dc.relation.ispartofseries | Inverse Problems | |
dc.subject.other | Calderón problem | |
dc.subject.other | Poisson operator | |
dc.subject.other | Hilbert transform | |
dc.title | Exponential instability in the fractional Calderón problem | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201802211557 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-02-21T16:15:12Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0266-5611 | |
dc.relation.numberinseries | 4 | |
dc.relation.volume | 34 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2018. This is an open access article distributed under the terms of the Creative Commons License. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 284715 HY | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 307023 | |
dc.relation.grantnumber | 309963 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE | |
dc.subject.yso | inversio-ongelmat | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
dc.rights.url | https://creativecommons.org/licenses/by/3.0/ | |
dc.relation.doi | 10.1088/1361-6420/aaac5a | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundingprogram | EU:n 7. puiteohjelma (FP7) | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | FP7 (EU's 7th Framework Programme) | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundinginformation | MS is supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, grant numbers 284715 and 309963) and an ERC Starting Grant (grant number 307023). | |
dc.type.okm | A1 | |