The Poisson embedding approach to the Calderón problem
Lassas, M., Liimatainen, T., & Salo, M. (2020). The Poisson embedding approach to the Calderón problem. Mathematische Annalen, 377(1-2), 19-67. https://doi.org/10.1007/s00208-019-01818-3
Julkaistu sarjassa
Mathematische AnnalenPäivämäärä
2020Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© The Author(s) 2019
We introduce a new approach to the anisotropic Calderón problem, based on a map called Poisson embedding that identifies the points of a Riemannian manifold with distributions on its boundary. We give a new uniqueness result for a large class of Calderón type inverse problems for quasilinear equations in the real analytic case. The approach also leads to a new proof of the result of Lassas et al. (Annales de l’ ENS 34(5):771–787, 2001) solving the Calderón problem on real analytic Riemannian manifolds. The proof uses the Poisson embedding to determine the harmonic functions in the manifold up to a harmonic morphism. The method also involves various Runge approximation results for linear elliptic equations.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-5831Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28964225
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; EU:n 7. puiteohjelma (FP7); Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
Open access funding provided by University of Jyväskylä (JYU). M.L., T.L. and M.S. were supported by the Academy of Finland (Centre of Excellence in Inverse Modelling and Imaging, grant numbers 284715 and 309963). M.S. was also partly supported by the European Research Council under FP7/2007-2013 (ERC StG 307023) and Horizon 2020 (ERC CoG 770924). We would like to thank an anonymous referee for valuable comments. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Exponential instability in the fractional Calderón problem
Rüland, Angkana; Salo, Mikko (Institute of Physics, 2018)In this paper we prove the exponential instability of the fractional Calderón problem and thus prove the optimality of the logarithmic stability estimate from Rüland and Salo (2017 arXiv:1708.06294). In order to infer this ... -
Calderón's problem for p-laplace type equations
Brander, Tommi (University of Jyväskylä, 2016)We investigate a generalization of Calderón’s problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation div σ ... -
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ... -
The higher order fractional Calderón problem for linear local operators : Uniqueness
Covi, Giovanni; Mönkkönen, Keijo; Railo, Jesse; Uhlmann, Gunther (Elsevier, 2022)We study an inverse problem for the fractional Schrödinger equation (FSE) with a local perturbation by a linear partial differential operator (PDO) of order smaller than the one of the fractional Laplacian. We show that ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.