Measurement of the energy distribution of electrons escaping minimum-B ECR plasmas
Izotov, I., Tarvainen, O., Skalyga, V., Mansfeld, D., Kalvas, T., Koivisto, H., & Kronholm, R. (2018). Measurement of the energy distribution of electrons escaping minimum-B ECR plasmas. Plasma Sources Science and Technology, 27(2), Article 025012. https://doi.org/10.1088/1361-6595/aaac14
Published in
Plasma Sources Science and TechnologyAuthors
Date
2018Copyright
© 2018 IOP Publishing Ltd. This is a final draft version of an article whose final and definitive form has been published by IOP Publishing Ltd. Published in this repository with the kind permission of the publisher.
The measurement of the electron energy distribution (EED) of electrons escaping axially from a minimum-B electron cyclotron resonance ion source (ECRIS) is reported. The experimental data were recorded with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The electrons escaping through the extraction mirror of the ion source were detected with a secondary electron amplifier placed downstream from a dipole magnet serving as an electron spectrometer with 500 eV resolution. It was discovered that the EED in the range of 5–250 keV is strongly non-Maxwellian and exhibits several local maxima below 20 keV energy. It was observed that the most influential ion source operating parameter on the EED is the magnetic field strength, which affected the EED predominantly at energies less than 100 keV. The effects of the microwave power and frequency, ranging from 100 to 600 W and 11 to 14 GHz, respectively, on the EED were found to be less significant. The presented technique and experiments enable the comparison between direct measurement of the EED and results derived from Bremsstrahlung diagnostics, the latter being severely complicated by the non-Maxwellian nature of the EED reported here. The role of RF pitch angle scattering on electron losses and the relation between the EED of the axially escaping electrons and the EED of the confined electrons are discussed.
...
Publisher
IOP PublishingISSN Search the Publication Forum
0963-0252Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27886947
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Researcher mobility Funding, AoFAdditional information about funding
This work was supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2012-2017 (Project No. 213503) and mobility Grant Nos. 311173 and 311237. The work of I Izotov and V Skalyga was supported by Russian Science Foundation, Grant No. 16-12-10343.Related items
Showing items with similar title or keywords.
-
Bremsstrahlung Emission of an X-Band Permanent Magnet Minimum-B Quadrupole Electron Cyclotron Resonance Ion Source
Tarvainen, Olli; Toivanen, Ville; Kalvas, Taneli; Koivisto, Hannu A.; Kosonen, Sami (Institute of Electrical and Electronics Engineers (IEEE), 2024)We have carried out bremsstrahlung measurements on a permanent magnet minimum-B quadrupole electron cyclotron resonance (ECR) ion source operating at 10.3–11.5 GHz microwave frequencies. The bremsstrahlung spectral temperature ... -
The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source
Izotov, Ivan; Shalashov, Alexander G; Skalyga, Vadim; Gospodchikov, Egor D; Tarvainen, Olli; Mironov, Vladimir; Koivisto, Hannu; Kronholm, Risto; Toivanen, Ville; Subhash Bhasi Bhaskar, Bichu (IOP Publishing, 2021)The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4--800 keV is reported. The experiments have revealed the existence of a ... -
Measurements of the energy distribution of electrons lost from the minimum B-field : the effect of instabilities and two-frequency heating
Izotov, I.; Tarvainen, O.; Skalyga, V.; Mansfeld, D.; Koivisto, H.; Kronholm, R.; Toivanen, V.; Mironov, V. (American Institute of Physics, 2020)Further progress in the development of electron cyclotron resonance (ECR) ion sources (ECRISs) requires deeper understanding of the underlying physics. One of the topics that remains obscure, though being crucial for the ... -
Slit extraction and emittance results of a permanent magnet minimum-B quadrupole electron cyclotron resonance ion source
Kosonen, Sami; Kalvas, Taneli; Koivisto, Hannu; Tarvainen, Olli; Toivanen, Ville (Elsevier, 2024)We present an experimental and simulation study of high charge state ion beams produced with a permanent magnet electron cyclotron resonance ion source (ECRIS) with minimum-B quadrupole magnetic field topology and slit ... -
Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma
Li, Jibo; Li, lixuan; Bhaskar, Bichu; Toivanen, Ville; Tarvainen, Olli; Hitz, Denis; Li, Libin; Lu, Wang; Koivisto, Hannu; Thuillier, Thomas; Guo, Junwei; Zhang, Xuezhen; Zhao, Huanyu; Sun, Lingting; Zhao, Hongwei (IOP Publishing, 2020)To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts ...