University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Bamboo-like Chained Cavities and Other Halogen-Bonded Complexes from Tetrahaloethynyl Cavitands with Simple Ditopic Halogen Bond Acceptors

ThumbnailFinal Draft
View/Open
2.0Mb

Downloads:  
Show download detailsHide download details  
Turunen, L., Pan, F., Beyeh, N. K., Trant, J. F., Ras, R. H. A., & Rissanen, K. (2018). Bamboo-like Chained Cavities and Other Halogen-Bonded Complexes from Tetrahaloethynyl Cavitands with Simple Ditopic Halogen Bond Acceptors. Crystal Growth and Design, 18 (1), 513-520. doi:10.1021/acs.cgd.7b01517
Published in
Crystal Growth and Design
Authors
Turunen, Lotta |
Pan, FangFang |
Beyeh, Ngong Kodiah |
Trant, John F. |
Ras, Robin H. A. |
Rissanen, Kari
Date
2018
Discipline
Orgaaninen kemia
Copyright
© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher.

 
Halogen bonding provides a useful complement to hydrogen bonding and metal-coordination as a tool for organizing supramolecular systems. Resorcinarenes, tetrameric bowl-shaped cavitands, have been previously shown to function as efficient scaffolds for generating dimeric capsules in both solution and solid-phase, and complicated one-, two-, and three-dimensional frameworks in the solid phase. Tetrahaloethynyl resorcinarenes (bromide and iodide) position the halogen atoms in a very promising “crown-like” orientation for acting as organizing halogen-bond donors to help build capsules and higher-order networks. Symmetric divalent halogen bond acceptors including bipyridines, 1,4-dioxane, and 1,4-diazabicyclo[2.2.2]octane are very promising halogen bond accepting partners for creating these systems. This report describes the complex structures arising from combining these various systems including self-included dimers, herringbone-packed architectures enclosing medium (186 Å3) cavities, and a very intriguing bamboo-like one-dimensional rod with large (683 Å3) cavities between adjacent dimeric units. These various structures, all organized through host–host, host–acceptor, and host–solvent interactions highlight the emergent complexity of these types of complexes. As halogen bonds are weaker than hydrogen-bonds, the resulting architectures are harder to predict, and these results provide additional insight into the parameters requiring consideration when designing crystalline supramolecular systems using halogen-bonds as the core organizing principle. ...
Publisher
American Chemical Society
ISSN Search the Publication Forum
1528-7483
Keywords
halogen-bonded complexes halogen bonds halogens bonds chemistry
DOI
10.1021/acs.cgd.7b01517
URI

http://urn.fi/URN:NBN:fi:jyu-201801151198

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [3683]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre