Show simple item record

dc.contributor.authorKoskela, Pekka
dc.contributor.authorZhang, Yi
dc.contributor.authorZhou, Yuan
dc.date.accessioned2017-11-30T09:37:56Z
dc.date.available2017-11-30T09:37:56Z
dc.date.issued2017
dc.identifier.citationKoskela, P., Zhang, Y., & Zhou, Y. (2017). Morrey–Sobolev Extension Domains. <em>Journal of Geometric Analysis</em>, 27 (2), 1413-1434. <a href="https://doi.org/10.1007/s12220-016-9724-9">doi:10.1007/s12220-016-9724-9</a>
dc.identifier.otherTUTKAID_70900
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56054
dc.description.abstractWe show that every uniform domain of R n with n ≥ 2 is a Morrey-Sobolev W 1, p-extension domain for all p ∈ [1, n), and moreover, that this result is essentially best possible for each p ∈ [1, n) in the sense that, given a simply connected planar domain or a domain of R n with n ≥ 3 that is quasiconformal equivalent to a uniform domain, if it is a W 1, p-extension domain, then it must be uniform.
dc.language.isoeng
dc.publisherSpringer New York LLC
dc.relation.ispartofseriesJournal of Geometric Analysis
dc.subject.otherextensions
dc.subject.otherMorrey–Sobolev space
dc.subject.otheruniform domain
dc.titleMorrey–Sobolev Extension Domains
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201711294413
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikka
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-11-29T10:15:04Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1413-1434
dc.relation.issn1050-6926
dc.relation.volume27
dc.type.versionacceptedVersion
dc.rights.copyright© Mathematica Josephina, Inc. 2016. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1007/s12220-016-9724-9


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record