Morrey–Sobolev Extension Domains
Koskela, P., Zhang, Y., & Zhou, Y. (2017). Morrey–Sobolev Extension Domains. Journal of Geometric Analysis, 27(2), 1413-1434. https://doi.org/10.1007/s12220-016-9724-9
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2017Tekijänoikeudet
© Mathematica Josephina, Inc. 2016. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
2017:9 | 2018:188 | 2019:64 | 2020:73 | 2021:95 | 2022:41 | 2023:77 | 2024:79 | 2025:5
We show that every uniform domain of R
n with n ≥ 2 is a Morrey-Sobolev
W 1, p-extension domain for all p ∈ [1, n), and moreover, that this result is essentially best
possible for each p ∈ [1, n) in the sense that, given a simply connected planar domain or
a domain of R
n with n ≥ 3 that is quasiconformal equivalent to a uniform domain, if it
is a W 1, p-extension domain, then it must be uniform.
Julkaisija
Springer New York LLCISSN Hae Julkaisufoorumista
1050-6926Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26163532
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Planar Sobolev extension domains
Zhang, Yi (University of Jyväskylä, 2017)This doctoral thesis deals with geometric characterizations of bounded planar simply connected Sobolev extension domains. It consists of three papers. In the first and third papers we give full geometric characterizations ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Strong BV-extension and W1,1-extension domains
García-Bravo, Miguel; Rajala, Tapio (Elsevier, 2022)We show that a bounded domain in a Euclidean space is a W1,1-extension domain if and only if it is a strong BV-extension domain. In the planar case, bounded and strong BV-extension domains are shown to be exactly those ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains. -
Mappings of finite distortion : boundary extensions in uniform domains
Äkkinen, Tuomo; Guo, Changyu (Springer, 2017)In this paper, we consider mappings on uniform domains with exponentially integrable distortion whose Jacobian determinants are integrable. We show that such mappings can be extended to the boundary and moreover these ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.