Näytä suppeat kuvailutiedot

dc.contributor.authorCochez, Michael
dc.contributor.authorTerziyan, Vagan
dc.contributor.authorErmolayev, Vadim
dc.contributor.editorNguyen, Ngoc Thanh
dc.contributor.editorKowalczyk, Ryszard
dc.contributor.editorPinto, Alexandre Miguel
dc.contributor.editorCardoso, Jorge
dc.date.accessioned2017-11-17T10:27:26Z
dc.date.available2017-11-17T10:27:26Z
dc.date.issued2017
dc.identifier.citationCochez, M., Terziyan, V., & Ermolayev, V. (2017). Large Scale Knowledge Matching with Balanced Efficiency-Effectiveness Using LSH Forest. In N. T. Nguyen, R. Kowalczyk, A. M. Pinto, & J. Cardoso (Eds.), <i>Transactions on Computational Collective Intelligencev XXVI</i> (pp. 46-66). Springer. Lecture Notes in Computer Science, 10190. <a href="https://doi.org/10.1007/978-3-319-59268-8_3" target="_blank">https://doi.org/10.1007/978-3-319-59268-8_3</a>
dc.identifier.otherCONVID_27096245
dc.identifier.otherTUTKAID_74314
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55913
dc.description.abstractEvolving Knowledge Ecosystems were proposed to approach the Big Data challenge, following the hypothesis that knowledge evolves in a way similar to biological systems. Therefore, the inner working of the knowledge ecosystem can be spotted from natural evolution. An evolving knowledge ecosystem consists of Knowledge Organisms, which form a representation of the knowledge, and the environment in which they reside. The environment consists of contexts, which are composed of so-called knowledge tokens. These tokens are ontological fragments extracted from information tokens, in turn, which originate from the streams of information flowing into the ecosystem. In this article we investigate the use of LSH Forest (a self-tuning indexing schema based on locality-sensitive hashing) for solving the problem of placing new knowledge tokens in the right contexts of the environment. We argue and show experimentally that LSH Forest possesses required properties and could be used for large distributed set-ups. Further, we show experimentally that for our type of data minhashing works better than random hyperplane hashing. This paper is an extension of the paper “Balanced Large Scale Knowledge Matching Using LSH Forest” presented at the International Keystone Conference 2015.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofTransactions on Computational Collective Intelligencev XXVI
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.subject.otherevolving knowledge ecosystems
dc.subject.otherlocality-sensitive hashing
dc.subject.otherLSH forest
dc.subject.otherminhash
dc.subject.otherrandom hyperplane hashing
dc.titleLarge Scale Knowledge Matching with Balanced Efficiency-Effectiveness Using LSH Forest
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-201711164270
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2017-11-16T13:26:21Z
dc.relation.isbn978-3-319-59267-1
dc.type.coarconference paper
dc.description.reviewstatuspeerReviewed
dc.format.pagerange46-66
dc.relation.issn0302-9743
dc.type.versionacceptedVersion
dc.rights.copyright© Springer International Publishing AG 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceTransactions on Computational Collective Intelligence
dc.subject.ysoekosysteemit (ekologia)
dc.subject.ysobig data
dc.subject.ysotietotekniikka
jyx.subject.urihttp://www.yso.fi/onto/yso/p4997
jyx.subject.urihttp://www.yso.fi/onto/yso/p27202
jyx.subject.urihttp://www.yso.fi/onto/yso/p5462
dc.relation.doi10.1007/978-3-319-59268-8_3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot