On Detection of Network-Based Co-residence Verification Attacks in SDN-Driven Clouds
Zolotukhin, M., Ivannikova, E., & Hämäläinen, T. (2017). On Detection of Network-Based Co-residence Verification Attacks in SDN-Driven Clouds. In O. Galinina, S. Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2017, ruSMART 2017, NsCC 2017 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 235-246). Springer International Publishing. Lecture Notes in Computer Science, 10531. https://doi.org/10.1007/978-3-319-67380-6_22
Julkaistu sarjassa
Lecture Notes in Computer SciencePäivämäärä
2017Tekijänoikeudet
© Springer International Publishing AG 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
Modern cloud environments allow users to consume computational
and storage resources in the form of virtual machines. Even
though machines running on the same cloud server are logically isolated
from each other, a malicious customer can create various side channels
to obtain sensitive information from co-located machines. In this study,
we concentrate on timely detection of intentional co-residence attempts
in cloud environments that utilize software-defined networking. SDN enables
global visibility of the network state which allows the cloud provider
to monitor and extract necessary information from each flow in every
virtual network in online mode. We analyze the extracted statistics on
different levels in order to find anomalous patterns. The detection results
obtained show us that the co-residence verification attack can be
detected with the methods that are usually employed for botnet analysis.
Julkaisija
Springer International PublishingEmojulkaisun ISBN
978-3-319-67379-0Konferenssi
International Conference on Next Generation Wired/Wireless Advanced Networks and SystemsKuuluu julkaisuun
NEW2AN 2017, ruSMART 2017, NsCC 2017 : Internet of Things, Smart Spaces, and Next Generation Networks and SystemsISSN Hae Julkaisufoorumista
0302-9743Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27214976
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Network-Based Framework for Mobile Threat Detection
Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo (IEEE, 2018)Mobile malware attacks increased three folds in the past few years and continued to expand with the growing number of mobile users. Adversary uses a variety of evasion techniques to avoid detection by traditional systems, ... -
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
Detection of distributed denial-of-service attacks in encrypted network traffic
Hyvärinen, Mikko (2016)Tausta: Hajautetut palvelunestohyökkäykset ovat jo kaksi vuosikymmentä vanhoja. Useita strategioita on kehitetty taistelemaan niiden kasvavaa määrää vastaan vuosien varrella. Sovelluskerroksen protokollien hyökkäykset ... -
Reducing the Time to Detect Cyber Attacks : Combining Attack Simulation With Detection Logic
Myllyla, Juuso; Costin, Andrei (FRUCT Oy, 2021)Cyber attacks have become harder to detect, causing the average detection time of a successful data breach to be over six months and typically costing the target organization nearly four million dollars. The attacks are ... -
Adversarial Attack’s Impact on Machine Learning Model in Cyber-Physical Systems
Vähäkainu, Petri; Lehto, Martti; Kariluoto, Antti (Peregrine Technical Solutions, 2020)Deficiency of correctly implemented and robust defence leaves Internet of Things devices vulnerable to cyber threats, such as adversarial attacks. A perpetrator can utilize adversarial examples when attacking Machine ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.