Show simple item record

dc.contributor.authorLuk, Hoi Ling
dc.contributor.authorFeist, Johannes
dc.contributor.authorToppari, Jussi
dc.contributor.authorGroenhof, Gerrit
dc.date.accessioned2017-09-27T12:39:00Z
dc.date.available2018-07-29T21:35:35Z
dc.date.issued2017
dc.identifier.citationLuk, H. L., Feist, J., Toppari, J., & Groenhof, G. (2017). Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. <i>Journal of Chemical Theory and Computation</i>, <i>13</i>(9), 4324-4335. <a href="https://doi.org/10.1021/acs.jctc.7b00388" target="_blank">https://doi.org/10.1021/acs.jctc.7b00388</a>
dc.identifier.otherCONVID_27138934
dc.identifier.otherTUTKAID_74553
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55471
dc.description.abstractWhen photoactive molecules interact strongly with confined light modes as found in plasmonic structures or optical cavities, new hybrid light-matter states can form, the so-called polaritons. These polaritons are coherent superpositions (in the quantum mechanical sense) of excitations of the molecules and of the cavity photon or surface plasmon. Recent experimental and theoretical works suggest that access to these polaritons in cavities could provide a totally new and attractive paradigm for controlling chemical reactions that falls in between traditional chemical catalysis and coherent laser control. However, designing cavity parameters to control chemistry requires a theoretical model with which the effect of the light-matter coupling on the molecular dynamics can be predicted accurately. Here we present a multiscale quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation model for photoactive molecules that are strongly coupled to confined light in optical cavities or surface plasmons. Using this model we have performed simulations with up to 1600 Rhodamine molecules in a cavity. The results of these simulations reveal that the contributions of the molecules to the polariton are time-dependent due to thermal fluctuations that break symmetry. Furthermore, the simulations suggest that in addition to the cavity quality factor, also the Stokes shift and number of molecules control the lifetime of the polariton. Because large numbers of molecules interacting with confined light can now be simulated in atomic detail, we anticipate that our method will lead to a better understanding of the effects of strong coupling on chemical reactivity. Ultimately the method may even be used to systematically design cavities to control photochemistry.en
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesJournal of Chemical Theory and Computation
dc.subject.otherstrong light-matter coupling
dc.subject.otherpolariton
dc.subject.othercavity QED
dc.subject.otherexcited states
dc.subject.otherQM/MM
dc.titleMultiscale Molecular Dynamics Simulations of Polaritonic Chemistry
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201709253807
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-09-25T12:15:05Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange4324-4335
dc.relation.issn1549-9618
dc.relation.numberinseries9
dc.relation.volume13
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by the American Chemical Society. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber258806
dc.relation.grantnumber290677
dc.relation.grantnumber289947
dc.subject.ysomolekyylidynamiikka
dc.subject.ysokvanttikemia
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p19301
dc.relation.doi10.1021/acs.jctc.7b00388
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiatutkijan tehtävä, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramResearch post as Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by the Academy of Finland (Grants 289947 to J.T.T. and 290677 and 258806 to G.G.) as well as the European Research Council (ERC-2011-AdG-290981) and the European Union Seventh Framework Programme (FP7-PEOPLE-2013-CIG-618229, J.F.). We acknowledge the Center for Scientific Computing (CSC-IT Center for Science) for computational resources. Finally, we acknowledge PRACE for awarding us access to resource Curie based in France at GENCI.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record