Näytä suppeat kuvailutiedot

dc.contributor.authorHosseinpour, Farhoud
dc.contributor.authorVahdani Amoli, Payam
dc.contributor.authorPlosila, Juha
dc.contributor.authorHämäläinen, Timo
dc.contributor.authorTenhunen, Hannu
dc.date.accessioned2017-05-24T07:35:35Z
dc.date.available2017-05-24T07:35:35Z
dc.date.issued2016
dc.identifier.citationHosseinpour, F., Vahdani Amoli, P., Plosila, J., Hämäläinen, T., & Tenhunen, H. (2016). An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach. <i>International Journal of Digital Content Technology and its Applications</i>, <i>10</i>(5), 34-46. <a href="http://www.globalcis.org/jdcta/ppl/JDCTA3775PPL.pdf" target="_blank">http://www.globalcis.org/jdcta/ppl/JDCTA3775PPL.pdf</a>
dc.identifier.otherCONVID_26490691
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/54088
dc.description.abstractThe Internet of Things (IoT) is widely used in advanced logistic systems. Safety and security of such systems are utmost important to guarantee the quality of their services. However, such systems are vulnerable to cyber-attacks. Development of lightweight anomaly based intrusion detection systems (IDS) is one of the key measures to tackle this problem. In this paper, we present a new distributed and lightweight IDS based on an Artificial Immune System (AIS). The IDS is distributed in a three-layered IoT structure including the cloud, fog and edge layers. In the cloud layer, the IDS clusters primary network traffic and trains its detectors. In the fog layer, we take advantage of a smart data concept to analyze the intrusion alerts. In the edge layer, we deploy our detectors in edge devices. Smart data is a very promising approach for enabling lightweight and efficient intrusion detection, providing a path for detection of silent attacks such as botnet attacks in IoT-based systems.
dc.language.isoeng
dc.publisherAdvanced Institute of Convergence IT
dc.relation.ispartofseriesInternational Journal of Digital Content Technology and its Applications
dc.relation.urihttp://www.globalcis.org/jdcta/ppl/JDCTA3775PPL.pdf
dc.subject.otherintrusion detection systems
dc.subject.othersmart data
dc.subject.otherfog computing
dc.titleAn Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201701191189
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-01-19T07:15:03Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange34-46
dc.relation.issn1975-9339
dc.relation.numberinseries5
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors & Advanced Institute of Convergence IT, 2016. This is an open access article published by Convergence Information Society.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoesineiden internet
jyx.subject.urihttp://www.yso.fi/onto/yso/p27206
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot