Blockchain-Based Resource Trading in Multi-UAV Edge Computing System
Xu, R., Chang, Z., Zhang, X., & Hämäläinen, T. (2024). Blockchain-Based Resource Trading in Multi-UAV Edge Computing System. IEEE Internet of Things Journal, Early Access. https://doi.org/10.1109/jiot.2024.3375918
Julkaistu sarjassa
IEEE Internet of Things JournalPäivämäärä
2024Tekijänoikeudet
© 2024 IEEE.
Unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) systems have emerged as a promising technology with the capability to expand terrestrial networks. UAVs, working as edge computing nodes and mobile base stations, can be deployed closer to user equipment (UEs). However, with the rapid increase of UEs, the scarcity of spectrum resources and computing resources has become a critical challenge for future mobile communication systems. Additionally, the inherent characteristics of wireless transmission and untrusted broadcasting pose significant security and privacy concerns for multi-UAV networks. To address these issues, this paper presents a blockchain-based resource trading mechanism (BRTM) and a double auction-based resource trading algorithm (DARA) for multi-UAV edge computing systems. It combines blockchain technology with double auction theory to ensure the security and fairness of resource trading. The relations between UEs and UAVs as a two-stage Stackelberg game is formulated and a pricing-based incentive strategy is proposed. The proposed scheme encourages active participation from both UEs and UAVs while maximizing the sum of their utilities. The security assessment and numerical outcomes show that the proposed method is effective and outperforms other benchmark schemes.
...
Julkaisija
Institute of Electrical and Electronics Engineers (IEEE)ISSN Hae Julkaisufoorumista
2372-2541Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207688927
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work is partly supported by the National Natural Science Foundation of China (NSFC) under Grant 62071105.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Incentive Mechanism for Edge Computing-based Blockchain : A Sequential Game Approach
Guo, Wenlong; Chang, Zheng; Guo, Xijuan; Wu, Peiliang; Han, Zhu (Institute of Electrical and Electronics Engineers (IEEE), 2022)The development of the blockchain framework is able to provide feasible solutions for a wide range of Industrial Internet of Things (IIoT) applications. While the IIoT devices are usually resource-limited, how to make sure ... -
Trajectory Design and Resource Allocation for Multi-UAV Networks : Deep Reinforcement Learning Approaches
Chang, Zheng; Deng, Hengwei; You, Li; Min, Geyong; Garg, Sahil; Kaddoum, Georges (Institute of Electrical and Electronics Engineers (IEEE), 2022)The future mobile communication system is expected to provide ubiquitous connectivity and unprecedented services over billions of devices. The unmanned aerial vehicle (UAV), which is prominent in its flexibility and low ... -
UAV-Aided Secure Short-Packet Data Collection and Transmission
Chen, Xinying; Zhao, Nan; Chang, Zheng; Hämäläinen, Timo; Wang, Xianbin (Institute of Electrical and Electronics Engineers (IEEE), 2023)Benefiting from the deployment flexibility and the line-of-sight (LoS) channel conditions, unmanned aerial vehicle (UAV) has gained tremendous attention in data collection for wireless sensor networks. However, the ... -
Reunalaskennan tietoturva nykyaikaisessa ajoneuvossa
Pasanen, Mauno (2022)Teknologian kehittymisen myötä arkipäiväiset laitteet, kuten kodinkoneet ja ajoneuvot, muuttuvat älykkäiksi esineiden internetin toimijoiksi. Siirrettävänä voi olla tietoja miljardeista laitteista, tai on käsiteltävä tietoa ... -
Dynamic Resource Allocation and Computation Offloading for IoT Fog Computing System
Chang, Zheng; Liu, Liqing; Guo, Xijuan; Sheng, Quan (IEEE, 2021)Fog computing system emerges as one of the promising technology for realizing the Internet of Things (IoT). By offloading the computational tasks to the fog node (FN) at the network edge, both the service latency and energy ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.