Show simple item record

dc.contributor.authorMattila, Keijo
dc.contributor.authorPhilippi, Paulo C.
dc.contributor.authorHegele, Luiz A.
dc.date.accessioned2017-05-03T09:54:39Z
dc.date.available2017-05-03T09:54:39Z
dc.date.issued2017
dc.identifier.citationMattila, K., Philippi, P. C., & Hegele, L. A., Jr. (2017). High-order regularization in lattice-Boltzmann equations. <em>Physics of Fluids</em>, 29 (4), 046103. <a href="https://doi.org/10.1063/1.4981227">doi:10.1063/1.4981227</a>
dc.identifier.otherTUTKAID_73633
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/53762
dc.description.abstractA lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order nonequilibrium moments are filtered, i.e., only the corresponding advective parts are retained after a given rank. The decomposition of moments into diffusive and advective parts is based directly on analytical relations between Hermite polynomial tensors. The resulting, refined regularization procedure leads to recurrence relations where high-order non-equilibrium moments are expressed in terms of low-order ones. The procedure is appealing in the sense that stability can be enhanced without local variation of transport parameters, like viscosity, or without tuning the simulation parameters based on embedded optimization steps. The improved stability properties are here demonstrated using the perturbed double periodic shear layer flow and the Sod shock tube problem as benchmark cases.
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesPhysics of Fluids
dc.subject.otherpolynomials
dc.subject.othersubspaces
dc.subject.othertensor methods: shock tubes
dc.subject.otherrecurrence relations
dc.titleHigh-order regularization in lattice-Boltzmann equations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201704272101
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-04-27T06:15:05Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.relation.issn1070-6631
dc.relation.volume29
dc.type.versionacceptedVersion
dc.rights.copyright© AIP Publishing, 2017. This is a final draft version of an article whose final and definitive form has been published by AIP. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1063/1.4981227


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record