dc.contributor.author | Matilainen, Markus | |
dc.contributor.author | Miettinen, Jari | |
dc.contributor.author | Nordhausen, Klaus | |
dc.contributor.author | Oja, Hannu | |
dc.contributor.author | Taskinen, Sara | |
dc.date.accessioned | 2017-04-27T06:42:02Z | |
dc.date.available | 2017-04-27T06:42:02Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Matilainen, M., Miettinen, J., Nordhausen, K., Oja, H., & Taskinen, S. (2017). On Independent Component Analysis with Stochastic Volatility Models. <i>Austrian Journal of Statistics</i>, <i>46</i>(3-4), 57-66. <a href="https://doi.org/10.17713/ajs.v46i3-4.671" target="_blank">https://doi.org/10.17713/ajs.v46i3-4.671</a> | |
dc.identifier.other | CONVID_26968046 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/53705 | |
dc.description.abstract | Consider a multivariate time series where each component series is assumed to be a
linear mixture of latent mutually independent stationary time series. Classical independent
component analysis (ICA) tools, such as fastICA, are often used to extract latent
series, but they don’t utilize any information on temporal dependence. Also financial time
series often have periods of low and high volatility. In such settings second order source
separation methods, such as SOBI, fail. We review here some classical methods used for
time series with stochastic volatility, and suggest modifications of them by proposing a
family of vSOBI estimators. These estimators use different nonlinearity functions to capture
nonlinear autocorrelation of the time series and extract the independent components.
Simulation study shows that the proposed method outperforms the existing methods when
latent components follow GARCH and SV models. This paper is an invited extended version
of the paper presented at the CDAM 2016 conference. | |
dc.language.iso | eng | |
dc.publisher | Österreichische Statistische Gesellschaft | |
dc.relation.ispartofseries | Austrian Journal of Statistics | |
dc.subject.other | blind source separation | |
dc.subject.other | GARCH model | |
dc.subject.other | nonlinear autocorrelation | |
dc.subject.other | multivariate time series | |
dc.title | On Independent Component Analysis with Stochastic Volatility Models | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201704242052 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-04-24T12:15:04Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 57-66 | |
dc.relation.issn | 1026-597X | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 46 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.rights.url | https://creativecommons.org/licenses/by/3.0/ | |
dc.relation.doi | 10.17713/ajs.v46i3-4.671 | |
dc.type.okm | A1 | |