Show simple item record

dc.contributor.authorMatilainen, Markus
dc.contributor.authorMiettinen, Jari
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorOja, Hannu
dc.contributor.authorTaskinen, Sara
dc.date.accessioned2017-04-27T06:42:02Z
dc.date.available2017-04-27T06:42:02Z
dc.date.issued2017
dc.identifier.citationMatilainen, M., Miettinen, J., Nordhausen, K., Oja, H., & Taskinen, S. (2017). On Independent Component Analysis with Stochastic Volatility Models. <i>Austrian Journal of Statistics</i>, <i>46</i>(3-4), 57-66. <a href="https://doi.org/10.17713/ajs.v46i3-4.671" target="_blank">https://doi.org/10.17713/ajs.v46i3-4.671</a>
dc.identifier.otherCONVID_26968046
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/53705
dc.description.abstractConsider a multivariate time series where each component series is assumed to be a linear mixture of latent mutually independent stationary time series. Classical independent component analysis (ICA) tools, such as fastICA, are often used to extract latent series, but they don’t utilize any information on temporal dependence. Also financial time series often have periods of low and high volatility. In such settings second order source separation methods, such as SOBI, fail. We review here some classical methods used for time series with stochastic volatility, and suggest modifications of them by proposing a family of vSOBI estimators. These estimators use different nonlinearity functions to capture nonlinear autocorrelation of the time series and extract the independent components. Simulation study shows that the proposed method outperforms the existing methods when latent components follow GARCH and SV models. This paper is an invited extended version of the paper presented at the CDAM 2016 conference.
dc.language.isoeng
dc.publisherÖsterreichische Statistische Gesellschaft
dc.relation.ispartofseriesAustrian Journal of Statistics
dc.subject.otherblind source separation
dc.subject.otherGARCH model
dc.subject.othernonlinear autocorrelation
dc.subject.othermultivariate time series
dc.titleOn Independent Component Analysis with Stochastic Volatility Models
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201704242052
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-04-24T12:15:04Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange57-66
dc.relation.issn1026-597X
dc.relation.numberinseries3-4
dc.relation.volume46
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.17713/ajs.v46i3-4.671
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License.
Except where otherwise noted, this item's license is described as © the Authors, 2017. This is an open access article distributed under the terms of a Creative Commons License.