How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?
Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipale, S., Thorp, J. H., & Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?. Freshwater Biology, 62(5), 833-853. https://doi.org/10.1111/fwb.12909
Julkaistu sarjassa
Freshwater BiologyTekijät
Guo, Fen |
Päivämäärä
2017Tekijänoikeudet
© 2017 John Wiley & Sons Ltd. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher.
Many freshwater systems receive substantial inputs of terrestrial organic matter. Terrestrially derived dissolved organic carbon (t-DOC) inputs can modify light availability, the spatial distribution of primary production, heat, and oxygen in aquatic systems, as well as inorganic nutrient bioavailability. It is also well-established that some terrestrial inputs (such as invertebrates and fruits) provide high-quality food resources for consumers in some systems.
In small to moderate-sized streams, leaf litter inputs average approximately three times greater than the autochthonous production. Conversely, in oligo/mesotrophic lakes algal production is typically five times greater than the available flux of allochthonous basal resources.
Terrestrial particulate organic carbon (t-POC) inputs to lakes and rivers are comprised of 80%–90% biochemically recalcitrant lignocellulose, which is highly resistant to enzymatic breakdown by animal consumers. Further, t-POC and heterotrophic bacteria lack essential biochemical compounds that are critical for rapid growth and reproduction in aquatic invertebrates and fishes. Several studies have directly shown that these resources have very low food quality for herbivorous zooplankton and benthic invertebrates.
Much of the nitrogen assimilated by stream consumers is probably of algal origin, even in systems where there appears to be a significant terrestrial carbon contribution. Amino acid stable isotope analyses for large river food webs indicate that most upper trophic level essential amino acids are derived from algae. Similarly, profiles of essential fatty acids in consumers show a strong dependence on the algal food resources.
Primary production to respiration ratios are not a meaningful index to assess consumer allochthony because respiration represents an oxidised carbon flux that cannot be utilised by animal consumers. Rather, the relative importance of allochthonous subsidies for upper trophic level production should be addressed by considering the rates at which terrestrial and autochthonous resources are consumed and the growth efficiency supported by this food.
Ultimately, the biochemical composition of a particular basal resource, and not just its quantity or origin, determines how readily this material is incorporated into upper trophic level consumers. Because of its highly favourable biochemical composition and greater availability, we conclude that microalgal production supports most animal production in freshwater ecosystems.
...
Julkaisija
Blackwell ScientificISSN Hae Julkaisufoorumista
0046-5070Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26912378
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide, methane, and nitrous oxide fluxes in the tundra
Virkkala, Anna-Maria; Niittynen, Pekka; Kemppinen, Julia; Marushchak, Maija E.; Voigt, Carolina; Hensgens, Geert; Kerttula, Johanna; Happonen, Konsta; Tyystjärvi, Vilna; Biasi, Christina; Hultman, Jenni; Rinne, Janne; Luoto, Miska (Copernicus GmbH, 2024)Arctic terrestrial greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) play an important role in the global GHG budget. However, these GHG fluxes are rarely studied simultaneously, ... -
The Importance of Phytoplankton Biomolecule Availability for Secondary Production
Peltomaa, Elina T.; Aalto, Sanni L.; Vuorio, Kristiina M.; Taipale, Sami (Frontiers Media S.A., 2017)The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we ... -
Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency
Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula (Nature Publishing Group, 2016)Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low ... -
Mixed effects of a national protected area network on terrestrial and freshwater biodiversity
Santangeli, Andrea; Weigel, Benjamin; Antão, Laura H.; Kaarlejärvi, Elina; Hällfors, Maria; Lehikoinen, Aleksi; Lindén, Andreas; Salemaa, Maija; Tonteri, Tiina; Merilä, Päivi; Vuorio, Kristiina; Ovaskainen, Otso; Vanhatalo, Jarno; Roslin, Tomas; Saastamoinen, Marjo (Springer, 2023)Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual ... -
Toxicity of uranium to two species of freshwater algae in Finnish natural freshwaters containing dissolved organic carbon
Hellmuth, Jaakko (2018)Suomen kallioperä sisältää uraania (U), jota vapautuu vesistöihin rapautumisen seurauksena. Uraania voi päätyä vesistöihin, jokiin ja järviin luonnollisten lähteiden lisäksi kaivostoiminnan sekä muun ihmisen toiminnan ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.