University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

Balancing selection maintains polymorphisms at neurogenetic loci in field experiments

ThumbnailPublisher's PDF
View/Open
833.2Kb

Downloads:  
Show download detailsHide download details  
Lonn, E., Koskela, E., Mappes, T., Mökkönen, M., Sims, A., & Watts, P. (2017). Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proceedings of the National Academy of Sciences of the United States of America, 114 (14), 3690-3695. doi:10.1073/pnas.1621228114
Published in
Proceedings of the National Academy of Sciences of the United States of America
Authors
Lonn, Eija |
Koskela, Esa |
Mappes, Tapio |
Mökkönen, Mikael |
Sims, Angela |
Watts, Philip
Date
2017
Discipline
Ekologia ja evoluutiobiologia
Copyright
© the Authors, 2017. Freely available online through the PNAS open access option.

 
Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5′ regulatory region (the regulatory regionassociated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin–oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations. ...
Publisher
National Academy of Sciences
ISSN Search the Publication Forum
0027-8424
Keywords
Avpr1a Myodes glareolus Oxtr density-dependent selection sexual conflict
DOI
10.1073/pnas.1621228114
URI

http://urn.fi/URN:NBN:fi:jyu-201704071925

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [3592]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre