Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients
Nevalainen, L., & Luoto, T. (2017). Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Functional Ecology, 31(2), 488-498. https://doi.org/10.1111/1365-2435.12737
Julkaistu sarjassa
Functional EcologyPäivämäärä
2017Tekijänoikeudet
© 2016 The Authors. Functional Ecology © 2016 British Ecological Society. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher.
Functional diversity (FD) as a biodiversity measure has an explicit role in ecosystem functioning because the effects of environmental changes in ecosystems are determined by biological functions, such as feeding type and trophic position, of particular species.
We evaluated the usability of functional characterization and FD of an aquatic keystone group (Crustacea: Cladocera) for enhancing the understanding of long-term lake functional responses to environmental changes. The aims were to separate ecologically significant functional groups, investigate succession of such functional groups during nutrient enrichment process and determine the relationship between FD and lake productivity using a palaeolimnological approach.
We selected two eutrophicated study lakes from southern Finland for down-core investigations, one with a centennial (past c. 350 years) and the other with a decadal (past c. 70 years) nutrient enrichment record. Cladoceran microfossils in the sediment cores were used to determine the taxonomic structure of the past communities. Ecologically relevant functional characteristics were determined to separate functional groups by utilizing a functional dendrogram and a weighted community-based FD index together with a set of multidimensional FD indices. The indices were applied to the down-core assemblages.
The functional dendrogram separated cladocerans into functional groups where habitat type principally separated open-water filterers and predators from epibenthic scrapers and detritivores. Further separation in the pelagic branch was based on body size and feeding and among the benthic branch body shape.
Functional assemblages changed markedly during the nutrient enrichment process. In the early stage of eutrophication, the largest functional changes were caused by small planktonic filterers and predators. Small filterers and epibenthos responded strongest during the eutrophic–hypereutrophic succession. FD had a positive long-term relationship with lake trophic status until eutrophic conditions that was likely caused by diversifying resources and versatile food webs. Under hypereutrophic conditions, and especially at a decadal temporal resolution, alternating predation regimes caused variance to FD.
In the current records, cladoceran FD was positively related to lake productivity and bottom-up controls during the early stages of eutrophication in the long-term record but top-down controls apparently were more important at a decadal scale and under hypereutrophic conditions.
...
Julkaisija
Wiley-Blackwell Publishing Ltd.; British Ecological SocietyISSN Hae Julkaisufoorumista
0269-8463Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26196110
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Species and genetic diversity relationships in benthic macroinvertebrate communities along a salinity gradient
Petersen, H. Cecilie; Hansen, Benni W.; Knott, K. Emily; Banta, Gary T. (Biomed Central, 2022)Background Species- and genetic diversity can change in parallel, resulting in a species-genetic diversity correlation (SGDC) and raising the question if the same drivers influence both biological levels of diversity. The ... -
Environmental context determines pollution impacts on ecosystem functioning
Burdon, Francis J.; Reyes, Marta; Schönenberger, Urs; Räsänen, Katja; Tiegs, Scott D.; Eggen, Rik I. L.; Stamm, Christian (Wiley, 2022)Global change assessments have typically ignored synthetic chemical pollution, despite the rapid increase of pharmaceuticals, pesticides and industrial chemicals in the environment. Part of the problem reflects the ... -
Environmental context determines pollution impacts on ecosystem functioning
Burdon, Francis J.; Reyes, Marta; Schönenberger, Urs; Räsänen, Katja; Tiegs, Scott D.; Eggen, Rik I. L.; Stamm, Christian (Wiley, 2023)Global change assessments have typically ignored synthetic chemical pollution, despite the rapid increase of pharmaceuticals, pesticides and industrial chemicals in the environment. Part of the problem reflects the ... -
The relationship between genetic diversity of an annelid worm, Pygospio elegans, and local invertebrate species diversity
Heiskanen, Siru (2016)Ympäristön monimuotoisuutta mitataan pääasiassa erilaisten biologisten yksiköiden lukumäärinä. Populaatiogenetiikassa ne ovat geenejä tai alleeleja yhden lajin sisällä, yhteisöekologiassa puolestaan lajeja eliöyhteisöjen ... -
Species interactions, environmental gradients and body size shape population niche width
Eloranta, Antti P.; Finstad, Anders G.; Sandlund, Odd Terje; Knudsen, Rune; Kuparinen, Anna; Amundsen, Per‐Arne (Wiley-Blackwell, 2022)Competition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.