Drops moving in flow with chernical reaction
Neittaanmäki, P., & Rivkind, V. (1994). Drops moving in flow with chernical reaction. Computational fluid dynamics '94: invited lectures and special technological sessions of the Second European Computational Fluid Dynamics Conference, 5-8 September 1994, Stuttgart., p. 888-893.
Päivämäärä
1994Tekijänoikeudet
© the Authors & J. Wiley & Sons, 1994.
We propose a free boundary model described
by coupled Navier-Stokes and chemical reaction equations
with discontinuous coefRcients to simulate the chemical re-
¿ctions in viscous drops moving in a viscous incompressible
ûuid. Approximation of the solution by a special ñnite
element method (FEM) with a method of mapping is discussed.
Several numerical resulùs åre presented.
Julkaisija
J. Wiley & SonsKuuluu julkaisuun
Computational fluid dynamics '94: invited lectures and special technological sessions of the Second European Computational Fluid Dynamics Conference, 5-8 September 1994, Stuttgart.Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the finite element method for time-harmonic acoustic boundary value problems
Neittaanmäki, Pekka; Picard, Rainer (Pergamon Press, 1981)The time harmonic acoustic boundary value problem in a smooth, bounded domain G of R2 is considered as a first order system. The optimal asymptotic L2(G) and H1(G)-error estimates 0(h2) and 0(h) resp. are derived for a ... -
A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
Lu, T.; Neittaanmäki, P.; Tai, X.-C. (AFCET Gauhtier-Villars, 1992)The tradìtíonal splitting-up method or fractíonal step method is stuítable for sequentìal compulìng. Thís means that the computing of the present fractional step needs the value of the previous fractional steps. In thìs ... -
Spectral element method and controllability approach for time-harmonic wave propagation
Mönkölä, Sanna (University of Jyväskylä, 2008) -
A graph-based multigrid with applications
Pennanen, Anssi (University of Jyväskylä, 2010) -
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.