dc.contributor.author | Miettinen, Jari | |
dc.contributor.author | Nordhausen, Klaus | |
dc.contributor.author | Taskinen, Sara | |
dc.date.accessioned | 2017-01-23T08:51:44Z | |
dc.date.available | 2017-01-23T08:51:44Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp. <i>Journal of Statistical Software</i>, <i>76</i>(2), 1-31. <a href="https://doi.org/10.18637/jss.v076.i02" target="_blank">https://doi.org/10.18637/jss.v076.i02</a> | |
dc.identifier.other | CONVID_26487836 | |
dc.identifier.other | TUTKAID_72661 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/52792 | |
dc.description.abstract | Blind source separation (BSS) is a well-known signal processing tool which is used to
solve practical data analysis problems in various fields of science. In BSS, we assume that
the observed data consists of linear mixtures of latent variables. The mixing system and
the distributions of the latent variables are unknown. The aim is to find an estimate of an
unmixing matrix which then transforms the observed data back to latent sources. In this
paper we present the R packages JADE and BSSasymp. The package JADE offers several
BSS methods which are based on joint diagonalization. Package BSSasymp contains
functions for computing the asymptotic covariance matrices as well as their data-based
estimates for most of the BSS estimators included in package JADE. Several simulated
and real datasets are used to illustrate the functions in these two packages. | |
dc.language.iso | eng | |
dc.publisher | Foundation for Open Access Statistics | |
dc.relation.ispartofseries | Journal of Statistical Software | |
dc.subject.other | multivariate time series | |
dc.subject.other | nonstationary source separation | |
dc.subject.other | performance indices | |
dc.subject.other | second order source separation | |
dc.subject.other | statistics | |
dc.title | Blind Source Separation Based on Joint Diagonalization in R : The Packages JADE and BSSasymp | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201701171174 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2017-01-17T16:15:07Z | |
dc.type.coar | journal article | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1-31 | |
dc.relation.issn | 1548-7660 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 76 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © the Authors, 2017. This is an open access article under the terms of the Creative Commons Attribution 3.0 Unported License. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | matematiikka | |
dc.subject.yso | riippumattomien komponenttien analyysi | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38529 | |
dc.rights.url | https://creativecommons.org/licenses/by/3.0/ | |
dc.relation.doi | 10.18637/jss.v076.i02 | |