On some inequalities for the identric, logarithmic and related means
Sándor, J., & Bhayo, B. (2015). On some inequalities for the identric, logarithmic and related means. Journal of Mathematical Inequalities, 9(3), 889-896. https://doi.org/10.7153/jmi-09-73
Julkaistu sarjassa
Journal of Mathematical InequalitiesPäivämäärä
2015Tekijänoikeudet
© the Authors & Element, 2015. This is an open access article distributed under the terms of a Creative Commons License.
We offer new proofs, refinements as well as new results related to classical means of
two variables, including the identric and logarithmic means.
Julkaisija
Element d.o.o.ISSN Hae Julkaisufoorumista
1846-579XAsiasanat
Alkuperäislähde
http://files.ele-math.com/articles/jmi-09-73.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/24760052
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © the Authors & Element, 2015. This is an open access article distributed under the terms of a Creative Commons License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Logarithmic mean inequality for generalized trigonometric and hyperbolic functions
Bhayo, Barkat; Yin, Li (Editura Scientia; Universitatea Sapientia Cluj-Napoca, 2015)In this paper we study the convexity and concavity properties of generalized trigonometric and hyperbolic functions in case of Logarithmic mean. -
Turán type inequalities for generalized inverse trigonometric functions
Baricz, Árpád; Bhayo, Barkat; Vuorinen, Matti (Department of Mathematics and Informatics, Faculty of Science and Mathematics, University of Niš, 2015)In this paper we study the inverse of the eigenfunction sinp of the one-dimensional p-Laplace operator and its dependence on the parameter p, and we present a Turan type inequality for this function. ´ Similar inequalities ... -
On the statistics of pairs of logarithms of integers
Parkkonen, Jouni; Paulin, Frédéric (Mathematical Sciences Publishers, 2022)We study the statistics of pairs of logarithms of positive integers at various scalings, either with trivial weights or with weights given by the Euler function, proving the existence of pair correlation functions. We prove ... -
Balitsky-Kovchegov equation at next-to-leading order accuracy with a resummation of large logarithms
Lappi, Tuomas; Mäntysaari, H. (Sissa, 2016)We include resummation of large transverse logarithms into the next-to-leading order BalitskyKovchegov equation. The resummed NLO evolution equation is shown to be stable, the evolution speed being significantly reduced ... -
Pair correlations of logarithms of complex lattice points
Parkkonen, Jouni; Paulin, Frédéric (Springer, 2024)We study the correlations of pairs of complex logarithms of Z-lattice points in C at various scalings, proving the existence of pair correlation functions. We prove that at the linear scaling, the pair correlations exhibit ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.