Microwave-assisted Esterification of Tall Oil Fatty Acids with Methanol Using Lignin-based Solid Catalyst
Kumar, H., & Alén, R. (2016). Microwave-assisted Esterification of Tall Oil Fatty Acids with Methanol Using Lignin-based Solid Catalyst. Energy and Fuels, 30(11), 9451-9455. https://doi.org/10.1021/acs.energyfuels.6b01718
Published in
Energy and FuelsDate
2016Copyright
© 2016 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher.
During alkaline pulping significant amounts of lignin, carbohydrates (mostly hemicelluloses), and extractives (tall oil soap and turpentine) are removed from wood feedstock. In this study, the catalytic esterification of fatty acids in tall oil with methanol to produce fatty acid methyl esters under microwave irradiation was performed at 100 °C for 10–60 min. A novel heterogeneous acid catalyst tested for this purpose was synthesized from the hardwood alkali lignin that was precipitated by acidification from the black liquor from soda-AQ pulping. The comparative reaction data were obtained by using other solid catalysts, Amberlyst 15, and p-toluenesulfonic acid. The results showed the highest esterification yields of 93, 88, and 80% with the p-toluenesulfonic acid, lignin-based, and Amberlyst 15 catalysts, respectively, at 100 °C with a reaction time of 60 min, and the corresponding yield without catalyst was 20%. It was also observed that the lignin-based catalyst could be easily recovered and reused without any notable deactivation.
...
Publisher
American Chemical SocietyISSN Search the Publication Forum
0887-0624Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26264400
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Microwave-assisted catalytic esterification of α-glucoisosaccharino-1,4-lactone with tall oil fatty acids
Kumar, Hemanathan; Alén, Raimo (Springer International Publishing, 2016)Background: Carbohydrates-rich materials are partly degraded during alkaline kraft pulping into a complex mixture of aliphatic carboxylic acids consisting of α-glucoisosaccharinic acid as one of the main acids. On the ... -
A novel synthetic approach to pyran-2,4-dione scaffold production : microwave-assisted dimerization, cyclization, and expeditious regioselective conversion into β-enamino-pyran-2,4-diones
Sarhan, Ahmed A.M.; Haukka, Matti; Barakat, Assem; Boraei, Ahmed T.A. (Elsevier, 2020)Here, we report a novel, green, simple, low-cost, and rapid methodology for the high-yield production of pyran-2,4-dione scaffolds under microwave irradiation. Regio- and stereoselective conversions of β-diketone systems ... -
Microwave-assisted conversion of novel biomass materials into levulinic acid
Lappalainen, Katja; Vogeler, Nils; Kärkkäinen, Johanna; Dong, Yue; Niemelä, Matti; Rusanen, Annu; Ruotsalainen, Anna Liisa; Wäli, Piippa; Markkola, Annamari; Lassi, Ulla (Springer, 2018)Levulinic acid is considered one of the most important platform chemicals. It is currently produced mainly from lignocellulosic biomasses. However, there are also other abundant biomass materials, which could be used as ... -
Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol
Arandia, Aitor; Yim, Jihong; Warraich, Hassaan; Leppäkangas, Emilia; Bes, René; Lempelto, Aku; Gell, Lars; Jiang, Hua; Meinander, Kristoffer; Viinikainen, Tiia; Huotari, Simo; Honkala, Karoliina; Puurunen, Riikka L. (Elsevier, 2023)The development of active catalysts for carbon dioxide (CO2) hydrogenation to methanol is intimately related to the creation of effective metal-oxide interfaces. In this work, we investigated how the order of addition of ... -
Conversion of Xylose to Furfural over Lignin-Based Activated Carbon-Supported Iron Catalysts
Rusanen, Annu; Kupila, Riikka; Lappalainen, Katja; Kärkkäinen, Johanna; Hu, Tao; Lassi, Ulla (MDPI, 2020)In this study, conversion of xylose to furfural was studied using lignin-based activated carbon-supported iron catalysts. First, three activated carbon supports were prepared from hydrolysis lignin with different activation ...