Statistical analysis of life sequence data
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2016Oppiaine
TilastotiedeJulkaisija
University of JyväskyläISBN
978-951-39-6758-1ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
sequence analysis event history analysis hidden Markov model mixture hidden Markov model latent Markov model multichannel sequences multidimensional sequences life course data pitkittäistutkimus tilastolliset mallit tilastomenetelmät elinaika-analyysi stokastiset prosessit Markovin ketjut sekvenssianalyysi elämänkaari elämäntilanne elämänmuutokset
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3574]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On resampling schemes for particle filters with weakly informative observations
Chopin, Nicolas; Singh, Sumeetpal S.; Soto, Tomás; Vihola, Matti (Institute of Mathematical Statistics, 2022)We consider particle filters with weakly informative observations (or ‘potentials’) relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of ... -
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ... -
Combining Sequence Analysis and Hidden Markov Models in the Analysis of Complex Life Sequence Data
Helske, Satu; Helske, Jouni; Eerola, Mervi (Springer, 2018)Life course data often consists of multiple parallel sequences, one for each life domain of interest. Multichannel sequence analysis has been used for computing pairwise dissimilarities and finding clusters in this type ... -
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
Cluster priors in the Bayesian modelling of fMRI data
Taskinen, Ilkka (University of Jyväskylä, 2001)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.