The squared symmetric FastICA estimator
Miettinen, J., Nordhausen, K., Oja, H., Taskinen, S., & Virta, J. (2017). The squared symmetric FastICA estimator. Signal Processing, 131(February), 402-411. https://doi.org/10.1016/j.sigpro.2016.08.028
Julkaistu sarjassa
Signal ProcessingPäivämäärä
2017Tekijänoikeudet
© 2016 Elsevier B.V. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
In this paper we study the theoretical properties of the deflation-based FastICA method, the original symmetric FastICA method, and a modified symmetric FastICA method, here called the squared symmetric FastICA. This modification is obtained by replacing the absolute values in the FastICA objective function by their squares. In the deflation-based case this replacement has no effect on the estimate since the maximization problem stays the same. However, in the symmetric case we obtain a different estimate which has been mentioned in the literature, but its theoretical properties have not been studied at all. In the paper we review the classic deflation-based and symmetric FastICA approaches and contrast these with the squared symmetric version of FastICA in a unified way. We find the estimating equations and derive the asymptotical properties of the squared symmetric FastICA estimator with an arbitrary choice of nonlinearity. This allows the main contribution of the paper, i.e., efficiency comparison of the estimates in a wide variety of situations using asymptotic variances of the unmixing matrix estimates.
...
Julkaisija
Elsevier BV; European Association for Signal ProcessingISSN Hae Julkaisufoorumista
0165-1684Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26199329
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Examining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging
Zhang, Qing; Hu, Guoqiang; Tian, Lili; Ristaniemi, Tapani; Wang, Huili; Chen, Hongjun; Wu, Jianlin; Cong, Fengyu (Springer Netherlands, 2018)Independent component analysis (ICA) on group-level voxel-based morphometry (VBM) produces the coefficient matrix and the component matrix. The former contains variability among multiple subjects for further statistical ... -
Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi‐site MRI data
Hao, Yuxing; Xu, Huashuai; Xia, Mingrui; Yan, Chenwei; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Wiley-Blackwell, 2023)Combining magnetic resonance imaging (MRI) data from multi-site studies is a popular approach for constructing larger datasets to greatly enhance the reliability and reproducibility of neuroscience research. However, the ... -
Asymptotic and bootstrap tests for subspace dimension
Nordhausen, Klaus; Oja, Hannu; Tyler, David E. (Elsevier, 2022)Many linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices. The eigen-decomposition of one scatter matrix with respect to another is then often used ... -
Enhancing Performance of Linked Independent Component Analysis : Investigating the Influence of Subjects and Modalities
Xu, Huashuai; Li, Huanjie; Kärkkäinen, Tommi; Cong, Fengyu (IEEE, 2023)In recent years, neuroimaging studies have increasingly been acquiring multiple modalities of data. The benefit of integrating multiple modalities through fusion lies in its ability to combine the unique strengths of each ... -
Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data
Zhang, Chao‐Ying; Lin, Qiu‐Hua; Niu, Yan‐Wei; Li, Wei‐Xing; Gong, Xiao‐Feng; Cong, Fengyu; Wang, Yu‐Ping; Calhoun, Vince D. (Wiley, 2023)Brain networks extracted by independent component analysis (ICA) from magnitude-only fMRI data are usually denoised using various amplitude-based thresholds. By contrast, spatial source phase (SSP) or the phase information ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.