Computation of the lock-in ranges of phase-locked loops with PI filter
Aleksandrov, K. D., Kuznetsov, N., Leonov, G. A., Neittaanmäki, P., Yuldashev, M. V., & Yuldashev, R. V. (2016). Computation of the lock-in ranges of phase-locked loops with PI filter. In H. Nijmeijer (Ed.), 6th IFAC Workshop on Periodic Control Systems PSYCO 2016 (pp. 36-41). International Federation of Automatic Control (IFAC). IFAC Proceedings Volumes (IFAC-PapersOnline), 49. https://doi.org/10.1016/j.ifacol.2016.07.971
Julkaistu sarjassa
IFAC Proceedings Volumes (IFAC-PapersOnline)Tekijät
Toimittajat
Päivämäärä
2016Tekijänoikeudet
© IFAC, 2016 (International Federation of Automatic Control). Hosting by Elsevier Ltd. Published in this repository with the kind permission of the publisher.
In the present work the lock-in range of PLL-based circuits with proportionallyintegrating
filter and sinusoidal phase-detector characteristics are studied. Considered circuits
have sinusoidal phase detector characteristics. Analytical approach based on the methods of
phase plane analysis is applied to estimate the lock-in ranges of the circuits under consideration.
Obtained analytical results are compared with simulation results.
Julkaisija
International Federation of Automatic Control (IFAC)Konferenssi
IFAC Workshop on Periodic Control SystemsKuuluu julkaisuun
6th IFAC Workshop on Periodic Control Systems PSYCO 2016ISSN Hae Julkaisufoorumista
2405-8963Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26156407
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Computation of lock-in range for classic PLL with lead-lag filter and impulse signals
Blagov, M. V.; Kudryashova, E. V.; Kuznetsov, Nikolay; Leonov, Gennady A.; Yuldashev, Marat V.; Yuldashev, Renat V. (International Federation of Automatic Control (IFAC), 2016)For a classic PLL with square waveform signals and lead-lag filter for all possible parameters lock-in range is computed and corresponding diagrams are given. -
О проблеме Гарднера для систем управления фазовой автоподстройкой частоты
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V. (Russian Academy of Sciences, 2019)This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the ... -
Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the Phase Detector
Blagov, M. V.; Kuznetsova, O. A.; Kudryashov, E. V.; Kuznetsov, Nikolay; Mokaev, T. N.; Mokaev, R. N.; Yuldashev, M. V.; Yuldashev, R. V. (Elsevier, 2019)In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures is considered. A new modification of the PLL with tangential phase detector characteristic ... -
The Egan problem on the pull-in range of type 2 PLLs
Kuznetsov, Nikolay V.; Lobachev, Mikhail Y.; Yuldashev, Marat V.; Yuldashev, Renat V. (Institute of Electrical and Electronics Engineers (IEEE), 2021)In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. ... -
Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V.; Kolumbán, G. (Elsevier, 2020)The most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.