dc.contributor.author | Stiehler, Christian | |
dc.contributor.author | Pan, Yi | |
dc.contributor.author | Schneider, Wolf-Dieter | |
dc.contributor.author | Koskinen, Pekka | |
dc.contributor.author | Häkkinen, Hannu | |
dc.contributor.author | Nilius, Niklas | |
dc.contributor.author | Freund, Hans-Joachim | |
dc.date.accessioned | 2016-02-16T06:38:39Z | |
dc.date.available | 2016-02-16T06:38:39Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Stiehler, C., Pan, Y., Schneider, W.-D., Koskinen, P., Häkkinen, H., Nilius, N., & Freund, H.-J. (2013). Electron quantization in arbitrarily shaped Au islands on MgO thin films. <i>Physical Review B</i>, <i>88</i>, Article 115415. <a href="https://doi.org/10.1103/PhysRevB.88.115415" target="_blank">https://doi.org/10.1103/PhysRevB.88.115415</a> | |
dc.identifier.other | CONVID_23216037 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/48789 | |
dc.description.abstract | Low-temperature scanning tunneling microscopy has been employed to analyze the formation of quantum
well states (QWS) in two-dimensional gold islands, containing between 50 and 200 atoms, on MgO thin
films. The energy position and symmetry of the eigenstates are revealed from conductance spectroscopy and
imaging. The majority of the QWS originates from overlapping Au 6p orbitals in the individual atoms and is
unoccupied. Their characteristic is already reproduced with simple particle-in-a-box models that account for
the symmetry of the islands (rectangular, triangular, or linear). However, better agreement is achieved when
considering the true atomic structure of the aggregates via a density functional tight-binding approach. Based on
a statistically relevant number of single-island data, we have established a correlation between the island geometry
and the gap between the highest-occupied and the lowest-unoccupied molecular orbital in the finite-sized islands.
The linear eccentricity is identified as a suitable descriptor for this relationship, as it combines information on both
island size and island shape. Finally, the depth of the confinement potential is determined from the spatial extension
of QWS beyond the physical boundaries of the Au islands. Our paper demonstrates how electron quantization
effects can be analyzed in detail in metal nanostructures. The results may help elucidating the interplay between
electronic and chemical properties of oxide-supported clusters as used in heterogeneous catalysis. | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review B | |
dc.subject.other | computational nanoscience | |
dc.subject.other | STM | |
dc.subject.other | electronic structure simulations | |
dc.subject.other | dft | |
dc.title | Electron quantization in arbitrarily shaped Au islands on MgO thin films | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201602031415 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physics | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2016-02-03T10:15:15Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1098-0121 | |
dc.relation.volume | 88 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2013 American Physical Society. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1103/PhysRevB.88.115415 | |
dc.type.okm | A1 | |