Ammonia Activation by a Nickel NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium
Brown, R. M., Garcia, J. B., Valjus, J., Roberts, C., Tuononen, H., Parvez, M., & Roesler, R. (2015). Ammonia Activation by a Nickel NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium. Angewandte Chemie International Edition, 54(21), 6274-6277. https://doi.org/10.1002/anie.201500453
Published in
Angewandte Chemie International EditionAuthors
Date
2015Discipline
Epäorgaaninen ja analyyttinen kemiaFysikaalinen kemiaNanoscience CenterInorganic and Analytical ChemistryPhysical ChemistryNanoscience CenterCopyright
© 2015 Wiley-VCH Verlag GmbH & Co. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher.
A Ni0-NCN pincer complex featuring a six-membered N-heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square-planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand-assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent-dependent equilibrium. A structural analysis of the Ni complexes provided insight into the highly unusual, non-innocent behavior of the NHC ligand.
Publisher
Wiley - VCH Verlag GmbH & Co. KGaAISSN Search the Publication Forum
1433-7851Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/24719062
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
N-Heterocyclic Carbenes with Inorganic Backbones: Electronic Structures and Ligand Properties
Kausamo, Anna; Tuononen, Heikki; Krahulic, Kelly; Roesler, Roland (ACS, 2008)The electronic structures of known N-heterocyclic carbenes (NHCs) with boron, nitrogen, and phosphorus backbones are examined using quantum chemical methods and compared to the experimental results and to the computational ... -
The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons
Hobbs, Matthew; Forster, Taryn; Borau-Garcia, Javier; Knapp, Chrissy; Tuononen, Heikki; Roesler, Roland (RSC, 2010)Targeting N-heterocyclic carbenes (NHCs) with increased π-acceptor character featuring N-fluorophenyl substituents, the molecular 2-chloro-1,3-bis(fluorophenyl)imidazolidine-4,5-diones (1a–c) were isolated from the ... -
A σ-Donor with a Planar Six-π-Electron B2N2C2 Framework: Anionic N-Heterocyclic Carbene or Heterocyclic Terphenyl Anion?
Forster, Taryn; Krahulic, Kelly; Tuononen, Heikki; McDonald, Robert; Parvez, Masood; Roesler, Roland (Wiley, 2006)NB! The anionic ligand 2 was synthesized through deprotonation of a planar, formally zwitterionic diazadiborine precursor, isolated as a lithium salt, and structurally characterized. According to experimental evidence and ... -
Extending the Series: Synthesis and Characterization of a Dicationic N-Heterocyclic Selenium Carbene Analogue
Dutton, Jason; Tuononen, Heikki; Jennings, Michael; Ragogna, Paul (ACS, 2006)The room-temperature reaction between the Dipp2DAB ligand, SnCl2, and SeCl4 results in the quantitative formation of a dicationic N-heterocyclic “carbenoid”. This represents the first example of a chalcogenium dication ... -
Isolation of Free Phenylide-like Carbanions with N-Heterocyclic Carbene Frameworks
Krahulic, Kelly; Tuononen, Heikki; Parvez, Masood; Roesler, Roland (ACS, 2009)A series of 1,3-bis(2,6-diisopropylphenyl)-5-methyl-1,3-diaza-4,6-diborabenzenes with methyl, phenyl, and dimethylamino substituents on the ring boron atoms were prepared using the cyclocondensation reaction between ...