Limited memory bundle algorithm for large bound constrained nonsmooth minization problems
Julkaistu sarjassa
Reports of the Department of Mathematical Information Technology. Series B, Scientific computingPäivämäärä
2006Typically, practical optimization problems involve nonsmooth functions
of hundreds or thousands of variables. As a rule, the variables in such problems
are restricted to certain meaningful intervals. In this paper, we propose
an efficient adaptive limited memory bundle method for large-scale nonsmooth,
possibly nonconvex, bound constrained optimization. The method
combines the nonsmooth variable metric bundle method and the smooth
limited memory variable metric method, while the constraint handling is
based on the projected gradient method and the dual subspace minimization.
The preliminary numerical experiments to be presented confirm the
usability of the method.
Julkaisija
University of JyväskyläISBN
951-39-2418-1ISSN Hae Julkaisufoorumista
1456-436XMetadata
Näytä kaikki kuvailutiedotSamankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems
Aghaei pour, Pouya; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2024)We consider multiobjective optimization problems with at least one computationally expensive constraint function and propose a novel surrogate-assisted evolutionary algorithm that can incorporate preference information ... -
Optimal Control Problems in Nonsmooth Solid and Fluid Mechanics : Computational Aspects
Haslinger, Jaroslav; Mäkinen, Raino A. E. (Springer, 2023)The paper is devoted to numerical realization of nonsmooth optimal control problems in solid and fluid mechanics with special emphasis on contact shape optimization and parameter identification in fluid flow models. ... -
Test problems for large-scale nonsmooth minimization
Karmitsa, Napsu (University of Jyväskylä, 2007)Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables with various constraints. However, there exist only few large-scale academic ... -
Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures
Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G. (National Technical University of Athens; ECCOMAS, 2016)The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering ... -
A variational inequality approach to constrained control problems
Neittaanmäki, Pekka; Tiba, D. (University of Jyväskylä, 1986)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.