Test problems for large-scale nonsmooth minimization
Published in
Reports of the Department of Mathematical Information Technology. Series B, Scientific computingAuthors
Date
2007Many practical optimization problems involve nonsmooth (that is, not necessarily
differentiable) functions of hundreds or thousands of variables with
various constraints. However, there exist only few large-scale academic test
problems for nonsmooth case and there is no established practice for testing
solvers for large-scale nonsmooth optimization. For this reason, we now
collect the nonsmooth test problems used in our previous numerical experiments
and also give some new problems. Namely, we give problems for
unconstrained, bound constrained, and inequality constrained nonsmooth
minimization.
Publisher
University of JyväskyläISBN
978-951-39-2784-4ISSN Search the Publication Forum
1456-436XMetadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Large-scale nonsmooth optimization : variable metric bundle method with limited memory
Haarala, Marjo (University of Jyväskylä, 2004)Marjo Haarala kehitti väitöskirjatutkimuksessaan rajoitetun muistin kimppumenetelmän, jota voidaan hyödyntää useilla tieteen ja tekniikan aloilla, kuten muun muassa ultraäänikuvien kuvankäsittelyssä. Uudella menetelmällä ... -
Large-scale nonsmooth optimization: new variable metric bundle algorithm with limited memory
Haarala, Marjo; Miettinen, Kaisa; Mäkelä, Marko M. (University of Jyväskylä, 2003) -
Limited memory bundle algorithm for large bound constrained nonsmooth minization problems
Haarala, Marjo; Mäkelä, Marko M. (University of Jyväskylä, 2006)Typically, practical optimization problems involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such problems are restricted to certain meaningful intervals. In this paper, we ... -
Optimal Control Problems in Nonsmooth Solid and Fluid Mechanics : Computational Aspects
Haslinger, Jaroslav; Mäkinen, Raino A. E. (Springer, 2023)The paper is devoted to numerical realization of nonsmooth optimal control problems in solid and fluid mechanics with special emphasis on contact shape optimization and parameter identification in fluid flow models. ... -
Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains
Křížek, Michal; Neittaanmäki, Pekka (Československá akademie věd. Matematický ústav., 1984)The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the ...