Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Jia
dc.contributor.authorGasbarra, Dario
dc.contributor.authorRailavo, Juha
dc.date.accessioned2015-11-05T05:50:15Z
dc.date.available2017-04-09T21:45:06Z
dc.date.issued2016
dc.identifier.citationLiu, J., Gasbarra, D., & Railavo, J. (2016). Fast Estimation of Diffusion Tensors under Rician noise by the EM algorithm. <i>Journal of Neuroscience Methods</i>, <i>257</i>, 147-158. <a href="https://doi.org/10.1016/j.jneumeth.2015.09.029" target="_blank">https://doi.org/10.1016/j.jneumeth.2015.09.029</a>
dc.identifier.otherCONVID_24899839
dc.identifier.otherTUTKAID_67206
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/47572
dc.description.abstractDiffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able to transform a non-linear regression problem into the generalized linear modeling framework, reducing dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of the tensor parameter. The new method is implemented and applied using both synthetic and real data in a wide range of b-amplitudes up to 14,000 s/mm2. Higher accuracy and precision of the Rician estimates are achieved compared with other log-normal based methods. In addition, we extend the maximum likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned scheme by specifying the priors. We will describe how close numerically are the estimators of model parameters obtained through MLE and MAP estimation.
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesJournal of Neuroscience Methods
dc.subject.otherdata augmentation
dc.subject.otherFisher scoring
dc.subject.othermaximum likelihood estimator
dc.subject.othermaximum a posteriori estimator
dc.subject.otherRician likelihood
dc.subject.otherreduced computation
dc.titleFast Estimation of Diffusion Tensors under Rician noise by the EM algorithm
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201511043593
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2015-11-04T13:15:03Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange147-158
dc.relation.issn0165-0270
dc.relation.numberinseries0
dc.relation.volume257
dc.type.versionacceptedVersion
dc.rights.copyright© 2015 Elsevier B.V. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1016/j.jneumeth.2015.09.029


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot