Show simple item record

dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorSaarela, Mirka
dc.contributor.editorPerner, Petra
dc.date.accessioned2015-09-07T06:03:33Z
dc.date.available2016-07-01T21:45:05Z
dc.date.issued2015
dc.identifier.citationKärkkäinen, T., & Saarela, M. (2015). Robust Principal Component Analysis of Data with Missing Values. In P. Perner (Ed.), <i>Machine Learning and Data Mining in Pattern Recognition : Proceedings of the 11th International Conference, MLDM 2015, Hamburg, Germany, July 20-21, 2015</i> (pp. 140-154). Springer International Publishing. Lecture Notes in Computer Science, 9166. <a href="https://doi.org/10.1007/978-3-319-21024-7_10" target="_blank">https://doi.org/10.1007/978-3-319-21024-7_10</a>
dc.identifier.otherCONVID_24832083
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/46769
dc.description.abstractPrincipal component analysis is one of the most popular machine learning and data mining techniques. Having its origins in statistics, principal component analysis is used in numerous applications. However, there seems to be not much systematic testing and assessment of principal component analysis for cases with erroneous and incomplete data. The purpose of this article is to propose multiple robust approaches for carrying out principal component analysis and, especially, to estimate the relative importances of the principal components to explain the data variability. Computational experiments are first focused on carefully designed simulated tests where the ground truth is known and can be used to assess the accuracy of the results of the different methods. In addition, a practical application and evaluation of the methods for an educational data set is given.fi
dc.format.extent454
dc.language.isoeng
dc.publisherSpringer International Publishing
dc.relation.ispartofMachine Learning and Data Mining in Pattern Recognition : Proceedings of the 11th International Conference, MLDM 2015, Hamburg, Germany, July 20-21, 2015
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.subject.otherPCA
dc.subject.othermissing data
dc.subject.otherrobust statistics
dc.titleRobust Principal Component Analysis of Data with Missing Values
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201509042808
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2015-09-04T06:15:02Z
dc.relation.isbn978-3-319-21024-7
jyx.noteAlso part of the Lecture Notes in Artificial Intelligence book sub series (LNAI, volume 9166)
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange140-154
dc.type.versionacceptedVersion
dc.rights.copyright© Springer International Publishing Switzerland 2015. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational conference on machine learning and data mining
dc.relation.doi10.1007/978-3-319-21024-7_10
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record