dc.contributor.author | Rajala, Tapio | |
dc.contributor.author | Sturm, Karl-Theodor | |
dc.date.accessioned | 2015-08-21T06:48:44Z | |
dc.date.available | 2015-08-21T06:48:44Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Rajala, T., & Sturm, K.-T. (2014). Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces. <i>Calculus of Variations and Partial Differential Equations</i>, <i>50</i>(3-4), 831-846. <a href="https://doi.org/10.1007/s00526-013-0657-x" target="_blank">https://doi.org/10.1007/s00526-013-0657-x</a> | |
dc.identifier.other | CONVID_23699941 | |
dc.identifier.other | TUTKAID_62007 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/46662 | |
dc.description.abstract | We prove that in metric measure spaces where the entropy functional is Kconvex
along every Wasserstein geodesic any optimal transport between two absolutely continuous
measures with finite second moments lives on a non-branching set of geodesics. As a
corollary we obtain that in these spaces there exists only one optimal transport plan between
any two absolutely continuous measures with finite second moments and this plan is given
by a map.
The results are applicable in metric measure spaces having Riemannian Ricci curvature
bounded below, and in particular they hold also for Gromov-Hausdorff limits of Riemannian
manifolds with Ricci curvature bounded from below by some constant. | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Calculus of Variations and Partial Differential Equations | |
dc.subject.other | metric measure spaces | |
dc.subject.other | non-branching geodesic | |
dc.subject.other | optimal mapss | |
dc.title | Non-branching geodesics and optimal maps in strong CD(K,∞) -spaces | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201508182691 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-08-18T09:15:05Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 831-846 | |
dc.relation.issn | 0944-2669 | |
dc.relation.numberinseries | 3-4 | |
dc.relation.volume | 50 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Springer-Verlag Berlin Heidelberg 2013. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.doi | 10.1007/s00526-013-0657-x | |
dc.type.okm | A1 | |