dc.contributor.author | Le Donne, Enrico | |
dc.contributor.author | Rajala, Tapio | |
dc.date.accessioned | 2015-08-18T05:39:47Z | |
dc.date.available | 2015-08-18T05:39:47Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Le Donne, E., & Rajala, T. (2015). Assouad Dimension, Nagata Dimension, and Uniformly Close Metric Tangents. <i>Indiana University Mathematics Journal</i>, <i>64</i>(1), 21-54. <a href="https://doi.org/10.1512/iumj.2015.64.5469" target="_blank">https://doi.org/10.1512/iumj.2015.64.5469</a> | |
dc.identifier.other | CONVID_24611622 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/46638 | |
dc.description.abstract | We study the Assouad dimension and the Nagata dimension
of metric spaces. As a general result, we prove that the Nagata
dimension of a metric space is always bounded from above by the
Assouad dimension. Most of the paper is devoted to the study of when
these metric dimensions of a metric space are locally given by the dimensions
of its metric tangents. Having uniformly close tangents is
not sufficient. What is needed, in addition, is either that the tangents
have dimension with uniform constants independent from the point
and the tangent, or that the tangents are unique. We will apply our results
to equiregular sub-Riemannian manifolds and show that, locally,
their Nagata dimension equals the topological dimension. | |
dc.language.iso | eng | |
dc.publisher | Indiana University | |
dc.relation.ispartofseries | Indiana University Mathematics Journal | |
dc.subject.other | assouad dimension | |
dc.subject.other | Nagata dimension | |
dc.subject.other | metric tangents | |
dc.subject.other | sub-Riemannian manifolds | |
dc.title | Assouad Dimension, Nagata Dimension, and Uniformly Close Metric Tangents | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201508172681 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-08-17T12:15:02Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 21-54 | |
dc.relation.issn | 0022-2518 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 64 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Indiana University Mathematics Journal. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1512/iumj.2015.64.5469 | |
dc.type.okm | A1 | |