On the broken ray transform
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2014Oppiaine
MatematiikkaJulkaisija
University of JyväskyläISBN
978-951-39-5743-8ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3598]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Partial Data Problems and Unique Continuation in Scalar and Vector Field Tomography
Ilmavirta, Joonas; Mönkkönen, Keijo (Birkhäuser, 2022)We prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set ... -
Feasibility of acousto-electric tomography
Jensen, Bjørn; Kirkeby, Adrian; Knudsen, Kim (IOP Publishing, 2024)In acousto-electric tomography (AET) the goal is to reconstruct the electric conductivity in a domain from electrostatic boundary measurements of corresponding currents and voltages, while the domain is perturbed by a ... -
X-ray Tomography of One-forms with Partial Data
Ilmavirta, Joonas; Mönkkönen, Keijo (Society for Industrial & Applied Mathematics (SIAM), 2021)If the integrals of a one-form over all lines meeting a small open set vanish and the form is closed in this set, then the one-form is exact in the whole Euclidean space. We obtain a unique continuation result for the ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ... -
Pestov identities and X-ray tomography on manifolds of low regularity
Ilmavirta, Joonas; Kykkänen, Antti (American Institute of Mathematical Sciences (AIMS), 2023)We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds (M, g) with g ∈ C1,1. In addition to a proof, we produce a redefinition of simplicity ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.