University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Objective reduction in multiobjective optimization

Thumbnail
View/Open
308.0 Kb

Downloads:  
Show download detailsHide download details  
Authors
Hakavuori, Eero
Date
2015
Discipline
TietotekniikkaMathematical Information Technology

 
Tämän tutkielman tavoitteena on tarkastella menetelmiä, jotka pyrkivät ratkaisemaan ongelmia, jotka ilmenevät monitavoiteoptimointitehtävissä tavoitteiden määrän kasvaessa suureksi. Työssä esitellään useita menetelmiä kattaen erilaisia oletuksia optimointitehtävän luonteelta, kuten esimerkiksi lineaaristen tai konveksien tehtävien tapaukset. Lisäksi kommentoidaan menetelmien vahvuuksia ja heikkouksia. Yksi menetelmistä otetaan käytännönläheisempään tarkasteluun toteuttamalla siihen liittyvä abstrakti algoritmi Python-koodina ja tarkastelemalla algoritmin käyttäytymistä esimerkkien avulla. Lisäksi esitetään muutamia tapoja luokitella monitavoiteoptimointitehtävien tavoitteiden vähentämisen menetelmiä.
 
The aim of this thesis is to study methods that have been created to avoid some of the problems related to solving multiobjective optimization problems with a large number of objectives. Multiple methods are presented covering various assumptions on the optimization problem, such as linearity or convexity, and the strengths and weaknesses of the methods are discussed. One of the methods is looked at in a more practical fashion, by presenting a Python code implementation of the abstract algorithm of the method in question and studying its behavior for some examples. Additionally, some criteria for classifying methods of objective reduction in multiobjective optimization are defined.
 
Keywords
monitavoiteoptimointi optimointi pareto-tehokkuus menetelmät
URI

http://urn.fi/URN:NBN:fi:jyu-201503061432

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24521]

Related items

Showing items with similar title or keywords.

  • DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization 

    Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)
    Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ...
  • Multi-scenario multi-objective robust optimization under deep uncertainty : A posteriori approach 

    Shavazipour, Babooshka; Kwakkel, Jan H.; Miettinen, Kaisa (Elsevier BV, 2021)
    This paper proposes a novel optimization approach for multi-scenario multi-objective robust decision making, as well as an alternative way for scenario discovery and identifying vulnerable scenarios even before any solution ...
  • Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies 

    Chugh, Tinkle; Allmendinger, Richard; Ojalehto, Vesa; Miettinen, Kaisa (Association for Computing Machinery (ACM), 2018)
    We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization ...
  • A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization 

    Filatovas, Ernestas; Podkopaev, Dmitry; Kurasova, Olga (Universitatea Agora, 2015)
    Interactive methods of multiobjective optimization repetitively derive Pareto optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive ...
  • INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning 

    Misitano, Giovanni (2020)
    Tässä tutkielmassa kehitetään interaktiivinen menetelmä – nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre