dc.contributor.author | Myllykoski, Mirko | |
dc.contributor.author | Glowinski, Roland | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Rossi, Tuomo | |
dc.date.accessioned | 2015-01-29T09:59:30Z | |
dc.date.available | 2015-01-29T09:59:30Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Myllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A New Augmented Lagrangian Approach for L1-mean Curvature Image Denoising. <i>SIAM Journal on Imaging Sciences</i>, <i>8</i>(1), 95-125. <a href="https://doi.org/10.1137/140962164" target="_blank">https://doi.org/10.1137/140962164</a> | |
dc.identifier.other | CONVID_24491898 | |
dc.identifier.other | TUTKAID_64896 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/45188 | |
dc.description.abstract | Variational methods are commonly used to solve noise removal problems. In this paper, we present
an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean
curvature of the graph of the image as a regularizer, discretization being achieved via a finite element
method. When a particular alternating direction method of multipliers is applied to the solution
of the resulting saddle-point problem, this solution reduces to an iterative sequential solution of
four subproblems. These subproblems are solved using Newton’s method, the conjugate gradient
method, and a partial solution variant of the cyclic reduction method. The approach considered here
differs from existing augmented Lagrangian approaches for the solution of the same problem; indeed,
the augmented Lagrangian functional we use here contains three Lagrange multipliers “only,” and
the associated augmentation terms are all quadratic. In addition to the description of the solution
algorithm, this paper contains the results of numerical experiments demonstrating the performance
of the novel method discussed here. | |
dc.language.iso | eng | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.relation.ispartofseries | SIAM Journal on Imaging Sciences | |
dc.subject.other | alternating direction methods of multipliers | |
dc.subject.other | augmented Lagrangian method | |
dc.subject.other | image denoising | |
dc.subject.other | mean curvature | |
dc.subject.other | variational model | |
dc.title | A New Augmented Lagrangian Approach for L1-mean Curvature Image Denoising | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201501261178 | |
dc.contributor.laitos | Tietotekniikan laitos | fi |
dc.contributor.laitos | Department of Mathematical Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-01-26T16:30:06Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 95-125 | |
dc.relation.issn | 1936-4954 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 8 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2015 Society for Industrial and Applied Mathematics. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | kuvankäsittely | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6449 | |
dc.relation.doi | 10.1137/140962164 | |
dc.type.okm | A1 | |