An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps
Salmi, S., Toivanen, J., & von Sydow, L. (2014). An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps. SIAM Journal on Scientific Computing, 36(5), B817-B834. https://doi.org/10.1137/130924905
Julkaistu sarjassa
SIAM Journal on Scientific ComputingPäivämäärä
2014Tekijänoikeudet
© Society for Industrial and Applied Mathematics. This is a final draft version of an article whose final and definitive form has been published by Society for Industrial and Applied Mathematics.
Partial integro-differential equation (PIDE) formulations are often preferable for
pricing options under models with stochastic volatility and jumps, especially for American-style
option contracts. We consider the pricing of options under such models, namely the Bates model
and the so-called stochastic volatility with contemporaneous jumps (SVCJ) model. The nonlocality
of the jump terms in these models leads to matrices with full matrix blocks. Standard discretization
methods are not viable directly since they would require the inversion of such a matrix. Instead,
we adopt a two-step implicit-explicit (IMEX) time discretization scheme, the IMEX-CNAB scheme,
where the jump term is treated explicitly using the second-order Adams–Bashforth (AB) method,
while the rest is treated implicitly using the Crank–Nicolson (CN) method. The resulting linear
systems can then be solved directly by employing LU decomposition. Alternatively, the systems can
be iterated under a scalable algebraic multigrid (AMG) method. For pricing American options, LU
decomposition is employed with an operator splitting method for the early exercise constraint or,
alternatively, a projected AMG method can be used to solve the resulting linear complementarity
problems. We price European and American options in numerical experiments, which demonstrate
the good efficiency of the proposed methods.
...
Julkaisija
Society for Industrial and Applied MathematicsISSN Hae Julkaisufoorumista
1064-8275Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/23919822
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Numerical methods for pricing options under jump-diffusion processes
Salmi, Santtu (University of Jyväskylä, 2013) -
Reduced order models for pricing American options under stochastic volatility and Jump-diffusion models
Balajewicz, Maciej; Toivanen, Jari (Elsevier BV, 2016)American options can be priced by solving linear complementary problems (LCPs) with parabolic partial(-integro) differential operators under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates ... -
Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models
Balajewicz, Maciej; Toivanen, Jari (Elsevier, 2017)European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like the Heston, Merton, and Bates models. American option prices can be ... -
ADI schemes for valuing European options under the Bates model
Hout, Karel J. in ’t; Toivanen, Jari (Elsevier BV, 2018)This paper is concerned with the adaptation of alternating direction implicit (ADI) time discretization schemes for the numerical solution of partial integro-differential equations (PIDEs) with application to the Bates ... -
Implicit versus explicit attitude to doping: Which better predicts athletes’ vigilance towards unintentional doping?
Chan, Derwin King Chung; Keatley, David A.; Tang, Tracy C.W.; Dimmock, James A.; Hagger, Martin (Elsevier, 2018)This preliminary study examined whether implicit doping attitude, explicit doping attitude, or both, predicted athletes’ vigilance towards unintentional doping. Design A cross-sectional correlational design. Metho ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.