Show simple item record

dc.contributor.authorSalmi, Santtu
dc.contributor.authorToivanen, Jari
dc.contributor.authorvon Sydow, Lina
dc.date.accessioned2014-12-17T05:53:10Z
dc.date.available2014-12-17T05:53:10Z
dc.date.issued2014
dc.identifier.citationSalmi, S., Toivanen, J., & von Sydow, L. (2014). An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps. <i>SIAM Journal on Scientific Computing</i>, <i>36</i>(5), B817-B834. <a href="https://doi.org/10.1137/130924905" target="_blank">https://doi.org/10.1137/130924905</a>
dc.identifier.otherCONVID_23919822
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/44917
dc.description.abstractPartial integro-differential equation (PIDE) formulations are often preferable for pricing options under models with stochastic volatility and jumps, especially for American-style option contracts. We consider the pricing of options under such models, namely the Bates model and the so-called stochastic volatility with contemporaneous jumps (SVCJ) model. The nonlocality of the jump terms in these models leads to matrices with full matrix blocks. Standard discretization methods are not viable directly since they would require the inversion of such a matrix. Instead, we adopt a two-step implicit-explicit (IMEX) time discretization scheme, the IMEX-CNAB scheme, where the jump term is treated explicitly using the second-order Adams–Bashforth (AB) method, while the rest is treated implicitly using the Crank–Nicolson (CN) method. The resulting linear systems can then be solved directly by employing LU decomposition. Alternatively, the systems can be iterated under a scalable algebraic multigrid (AMG) method. For pricing American options, LU decomposition is employed with an operator splitting method for the early exercise constraint or, alternatively, a projected AMG method can be used to solve the resulting linear complementarity problems. We price European and American options in numerical experiments, which demonstrate the good efficiency of the proposed methods.fi
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.ispartofseriesSIAM Journal on Scientific Computing
dc.subject.otheroption pricing
dc.subject.otherstochastic volatility model
dc.subject.otherjump-diffusion model
dc.subject.otherfinite difference method
dc.subject.otherimplicit-explicit time discretization
dc.titleAn IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201410253092
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2014-10-25T03:30:13Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerangeB817–B834
dc.relation.issn1064-8275
dc.relation.numberinseries5
dc.relation.volume36
dc.type.versionacceptedVersion
dc.rights.copyright© Society for Industrial and Applied Mathematics. This is a final draft version of an article whose final and definitive form has been published by Society for Industrial and Applied Mathematics.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.doi10.1137/130924905
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record