Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals
Honkala, K. (2014). Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals. Surface Science Reports, 69(4), 366-388. https://doi.org/10.1016/j.surfrep.2014.09.002
Published in
Surface Science ReportsAuthors
Date
2014Copyright
© Elsevier. This is a final draft version of an article whose final and definitive form has been published by Elsevier.
Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster׳s theoretically predicted ability to activate and dissociate O2 at the Au–MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide–metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born–Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.
...
Publisher
Elsevier BV * North-HollandISSN Search the Publication Forum
0167-5729Keywords
Original source
http://www.sciencedirect.com/science/article/pii/S0167572914000235Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/23969370
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Strictly-correlated-electron approach to excitation energies of dissociating molecules
Cort Barrada, Luis; Nielsen, Soeren Ersbak Bang; van Leeuwen, Robert (American Physical Society, 2019)In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently proposed approximation based on the density functional theory of so-called strictly correlated electrons ... -
Influence of a Cu–zirconia interface structure on CO2 adsorption and activation
Gell, Lars; Lempelto, Aku; Kiljunen, Toni; Honkala, Karoliina (American Institute of Physics, 2021)CO2 adsorption and activation on a catalyst are key elementary steps for CO2 conversion to various valuable products. In the present computational study, we screened different Cu–ZrO2 interface structures and analyzed the ... -
Escaping scaling relationships for water dissociation at interfacial sites of zirconia-supported Rh and Pt clusters
Kauppinen, Minttu M.; Korpelin, Ville; Verma, Mohan Anand; Melander, Marko M.; Honkala, Karoliina (American Institute of Physics, 2019)Water dissociation is an important reaction involved in many industrial processes. In this computational study, the dissociation of water is used as a model reaction for probing the activity of interfacial sites of globally ... -
Unraveling the prominent role of the Rh/ZrO2-interface in the water-gas shift reaction via a first principles microkinetic study
Kauppinen, Minttu; Melander, Marko; Bazhenov, Andrey; Honkala, Karoliina (American Chemical Society, 2018)The industrially important water–gas-shift (WGS) reaction is a complex network of competing elementary reactions in which the catalyst is a multicomponent system consisting of distinct domains. Herein, we have combined ... -
Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals
Ryssens, W.; Bender, M.; Bennaceur, Karim; Heenen, P.-H.; Meyer, J. (American Physical Society, 2019)Background: In the framework of nuclear energy density functional (EDF) methods, many nuclear phenomena are related to the deformation of intrinsic states. Their accurate modeling relies on the correct description of the ...