Näytä suppeat kuvailutiedot

dc.contributor.authorAbu-Jamous, Basel
dc.contributor.authorFa, Rui
dc.contributor.authorRoberts, David
dc.contributor.authorNandi, Asoke
dc.date.accessioned2014-01-31T11:53:06Z
dc.date.available2014-01-31T11:53:06Z
dc.date.issued2013
dc.identifier.citationAbu-Jamous, B., Fa, R., Roberts, D., & Nandi, A. (2013). Paradigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery. <i>PLOS ONE</i>, <i>8</i>(2), e56432. <a href="https://doi.org/10.1371/journal.pone.0056432" target="_blank">https://doi.org/10.1371/journal.pone.0056432</a>
dc.identifier.otherCONVID_23136746
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/42902
dc.description.abstractClustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.fi
dc.language.isoeng
dc.publisherPublic Library of Science
dc.relation.ispartofseriesPLOS ONE
dc.relation.urihttp://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0056432&representation=PDF
dc.subject.otherclustering
dc.subject.othergene discovery
dc.subject.othertunable binarization techniques
dc.titleParadigm of tunable clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for gene discovery
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201401311170
dc.contributor.laitosTietotekniikan laitosfi
dc.contributor.laitosDepartment of Mathematical Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2014-01-31T04:30:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerangee56432
dc.relation.issn1932-6203
dc.relation.numberinseries2
dc.relation.volume8
dc.type.versionpublishedVersion
dc.rights.copyright© 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.rights.urlhttps://creativecommons.org/licenses/by/2.0/
dc.relation.doi10.1371/journal.pone.0056432
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

© 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Ellei muuten mainita, aineiston lisenssi on © 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.